Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Med ; 13(8): e1385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37608493

RESUMO

BACKGROUND: CCN6 is a matricellular protein that critically regulates the tumourigenesis and progression of breast cancer. Although the tumour-suppressive function of CCN6 has been extensively studied, molecular mechanisms regulating protein levels of CCN6 remain largely unclear. This study aims to investigate the regulation of CCN6 by ubiquitination and deubiquitinating enzymes (DUBs) in breast cancer. METHODS: A screening assay was performed to identify OTUB1 as the DUB for CCN6. Various biochemical methods were applied to elucidate the molecular mechanism of OTUB1 in the regulation of CCN6. The role of OTUB1-CCN6 interaction in breast cancer was studied with cell experiments and the allograft model. The correlation of OTUB1 and CCN6 in human breast cancer was determined by immunohistochemistry and Western blot. RESULTS: We found that CCN6 protein levels were controlled by the ubiquitin-proteasome system. The K48 ubiquitination and degradation of CCN6 was inhibited by OTUB1, which directly interacted with CCN6 through its linker domain. Furthermore, OTUB1 inhibited the ubiquitination of CCN6 in a non-canonical manner. Deletion of OTUB1, concomitant with reduced CCN6 abundance, increased the migration, proliferation and viability of breast cancer cells. Supplementation of CCN6 abolished the effect of OTUB1 deletion on breast cancer. Importantly, OTUB1 expression was downregulated in human breast cancer and positively correlated with CCN6 levels. CONCLUSION: This study identified OTUB1 as a novel regulator of CCN6 in breast cancer.


Assuntos
Proteínas de Sinalização Intercelular CCN , Carcinogênese , Transformação Celular Neoplásica , Enzimas Desubiquitinantes , Humanos , Western Blotting , Citoplasma , Complexo de Endopeptidases do Proteassoma , Enzimas Desubiquitinantes/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo
2.
Adv Sci (Weinh) ; 10(28): e2301641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37587766

RESUMO

Cerebral ischemic stroke is a leading cause of morbidity and mortality globally. However, the mechanisms underlying ischemic stroke injury remain poorly understood. Here, it is found that deficiency of the ubiquitin-specific protease USP25 significantly aggravate ischemic stroke injury in mice. USP25 has no impact on neuronal death under hypoxic conditions, but reduced ischemic stroke-induced neuronal loss and neurological deficits by inhibiting microglia-mediated neuroinflammation. Mechanistically, USP25 restricts the activation of NF-κB and MAPK signaling by regulating TAB2. As a deubiquitinating enzyme, USP25 removeds K63-specific polyubiquitin chains from TAB2. AAV9-mediated TAB2 knockdown ameliorates ischemic stroke injury and abolishes the effect of USP25 deletion. In both mouse and human brains, USP25 is markedly upregulated in microglia in the ischemic penumbra, implying a clinical relevance of USP25 in ischemic stroke. Collectively, USP25 is identified as a critical inhibitor of ischemic stroke injury and this data suggest USP25 may serve as a therapeutic target for ischemic stroke.

3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166713, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37059312

RESUMO

Renal fibrosis is a crucial pathological feature of hypertensive renal disease (HRD). In-depth analysis of the pathogenesis of fibrosis is of great significance for the development of new drugs for the treatment of HRD. USP25 is a deubiquitinase that can regulate the progression of many diseases, but its function in the kidney remains unclear. We found that USP25 was significantly increased in human and mice HRD kidney tissues. In the HRD model induced by Ang II, USP25-/- mice showed significant aggravation of renal dysfunction and fibrosis compared with the control mice. Consistently, AAV9-mediated overexpression of USP25 significantly improved renal dysfunction and fibrosis. Mechanistically, USP25 inhibited the TGF-ß pathway by reducing SMAD4 K63-linked polyubiquitination, thereby suppressing SMAD2 nuclear translocation. In conclusion, this study demonstrates for the first time that the deubiquitinase USP25 plays an important regulatory role in HRD.


Assuntos
Hipertensão Renal , Hipertensão , Animais , Humanos , Camundongos , Enzimas Desubiquitinantes/metabolismo , Fibrose , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Angiotensina II
4.
Mol Psychiatry ; 27(1): 259-268, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34285347

RESUMO

Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid ß protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.


Assuntos
Doenças Neurodegenerativas , Peptídeos beta-Amiloides/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...