Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(23)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34883662

RESUMO

Coal gangue-slag geopolymer is a kind of environment-friendly material with excellent engineering performance and is formed from coal gangue and slag after excitation by an alkaline activator. In this study, three kinds of coal gangue-slag geopolymer were activated by different activators, and the compressive and flexural strengths of water and sulphate solutions in the wetting-drying (W-D) cycles were compared. The microscopic mechanism was analyzed by the XRD, the FTIR and the SEM. The following conclusions are drawn: The influence of W-D cycles on flexural strength was greater than compressive strength. The water migration and the recombination of geopolymers lead to the change of colour, as well as the reduction of flexural strength and compressive strength of geopolymers. The SH geopolymer had excellent anti-erosion ability in terms of flexural strength, and the reason for this was the recombination and polymerization reaction of geopolymer being weaker than the SS and the SSG. The corrosion resistance of the SS was reflected in the compressive strength, because its geopolymerization reaction was fierce, which produced more Na-rich C-N-A-S-H, N-A-S-H and C-A-S-H gels. Therefore, the compressive strength could still reach more than 39 MPa after 150 cycles. Sulfate solution could effectively control the reduction of compressive strength of the SH and the SS geopolymers during W-D cycles. The SSG had the worst corrosion resistance.

2.
Materials (Basel) ; 14(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34772082

RESUMO

Expansive soil is prone to cracks under a drying-wetting cycle environment, which brings many disasters to road engineering. The main purpose of this study is use coal gangue powder to improve expansive soil, in order to reduce its cracks and further explore its micro-pore mechanism. The drying-wetting cycles test is carried out on the soil sample, and the crack parameters of the soil sample are obtained by Matlab and Image J software. The roughness and micro-pore characteristics of the soil samples are revealed by means of the Laser confocal 3D microscope and Mercury intrusion meter. The results show that coal gangue powder reduces the crack area ratio of expansive soil by 48.9%, and the crack initiation time is delayed by at least 60 min. Coal gangue powder can increase the internal roughness of expansive soil. The greater the roughness of the soil, the less cracks in the soil. After six drying-wetting cycles, the porosity and average pore diameter of the improved and expanded soil are reduced by 37% and 30%, respectively, as compared to the plain expansive soil. By analyzing the cumulative pore volume and cumulative pore density parameters of soil samples, it is found that the macro-cracks are caused by the continuous connection and fusion of micro-voids in soil. Coal gangue powder can significantly reduce the proportion of micro-voids, cumulative pore volume, and cumulative pore density in expansive soil, so as to reduce the macro-cracks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...