Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 33(10): 1673-1689, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884342

RESUMO

Ultraconserved elements (UCEs) are the most conserved regions among the genomes of evolutionarily distant species and are thought to play critical biological functions. However, some UCEs rapidly evolved in specific lineages, and whether they contributed to adaptive evolution is still controversial. Here, using an increased number of sequenced genomes with high taxonomic coverage, we identified 2191 mammalian UCEs and 5938 avian UCEs from 95 mammal and 94 bird genomes, respectively. Our results show that these UCEs are functionally constrained and that their adjacent genes are prone to widespread expression with low expression diversity across tissues. Functional enrichment of mammalian and avian UCEs shows different trends indicating that UCEs may contribute to adaptive evolution of taxa. Focusing on lineage-specific accelerated evolution, we discover that the proportion of fast-evolving UCEs in nine mammalian and 10 avian test lineages range from 0.19% to 13.2%. Notably, up to 62.1% of fast-evolving UCEs in test lineages are much more likely to result from GC-biased gene conversion (gBGC). A single cervid-specific gBGC region embracing the uc.359 allele significantly alters the expression of Nova1 and other neural-related genes in the rat brain. Combined with the altered regulatory activity of ancient gBGC-induced fast-evolving UCEs in eutherians, our results provide evidence that synergy between gBGC and selection shaped lineage-specific substitution patterns, even in the most constrained regulatory elements. In summary, our results show that gBGC played an important role in facilitating lineage-specific accelerated evolution of UCEs, and further support the idea that a combination of multiple evolutionary forces shapes adaptive evolution.


Assuntos
Conversão Gênica , Mamíferos , Animais , Ratos , Mamíferos/genética , Alelos , Aves/genética , Evolução Molecular , Antígeno Neuro-Oncológico Ventral
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674681

RESUMO

Convergent evolution provides powerful opportunities to investigate the genetic basis of complex traits. The Tibetan antelope (Pantholops hodgsonii) and Siberian ibex (Capra sibirica) belong to different subfamilies in Bovidae, but both have evolved similar superfine cashmere characteristics to meet the cold temperature in plateau environments. The cashmere traits of cashmere goats underwent strong artificial selection, and some traces of domestication also remained in the genome. Hence, we investigated the convergent genomic signatures of cashmere traits between natural and artificial selection. We compared the patterns of convergent molecular evolution between Tibetan antelope and Siberian ibex by testing positively selected genes, rapidly evolving genes and convergent amino acid substitutions. In addition, we analyzed the selected genomic features of cashmere goats under artificial selection using whole-genome resequencing data, and skin transcriptome data of cashmere goats were also used to focus on the genes involved in regulating cashmere traits. We found that molecular convergent events were very rare, but natural and artificial selection genes were convergent enriched in similar functional pathways (e.g., ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway) in a variety of gene sets. Type IV collagen family genes (COL4A2, COL4A4, COL4A5, COL6A5, COL6A6) and integrin family genes (ITGA2, ITGA4, ITGA9, ITGB8) may be important candidate genes for cashmere formation and development. Our results provide a comprehensive approach and perspective for exploring cashmere traits and offer a valuable reference for subsequent in-depth research on the molecular mechanisms regulating cashmere development and fineness.


Assuntos
Antílopes , Animais , Antílopes/genética , Fosfatidilinositol 3-Quinases/genética , Genoma/genética , Genômica , Cabras/genética
4.
J Huazhong Univ Sci Technolog Med Sci ; 34(5): 687-691, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25318878

RESUMO

Donation after brain death followed by circulatory death (DBCD) is a unique practice in China. The aim of this study was to define the pathologic characteristics of DBCD liver allografts in a porcine model. Fifteen male pigs (25-30 kg) were allocated randomly into donation after brain death (DBD), donation after circulatory death (DCD) and DBCD groups. Brain death was induced by augmenting intracranial pressure. Circulatory death was induced by withdrawal of life support in DBCD group and by venous injection of 40 mL 10% potassium chloride in DCD group. The donor livers were perfused in situ and kept in cold storage for 4 h. Liver tissue and common bile duct samples were collected for hematoxylin and eosin staining, TUNEL testing and electron microscopic examination. Spot necrosis was found in hepatic parenchyma of DBD and DBCD groups, while a large area of necrosis was shown in DCD group. The apoptosis rate of hepatocytes in DBD [(0.56±0.30)%] and DBCD [(0.50 ± 0.11)%] groups was much lower than that in DCD group [(3.78±0.33)%] (P<0.05). And there was no significant difference between DBD group and DBCD group (P>0.05)). The structures of bile duct were intact in both DBD and DBCD groups, while the biliary epithelium was totally damaged in DCD group. Under electron microscope, the DBD hepatocytes were characterized by intact cell membrane, well-organized endoplasmic reticulum, mild mitochondria edema and abundant glycogens. Broken cell membrane, mild inflammatory cell infiltration and sinusoidal epithelium edema, as well as reduced glycogen volume, were found in the DBCD hepatocytes. The DCD hepatocytes had more profound cell organelle injury and much less glycogen storage. In conclusion, the preservation injury of DBCD liver allografts is much less severe than that of un-controlled DCD, but more severe than that of DBD liver allografts under electron microscope, which might reflect post-transplant liver function to some extent.


Assuntos
Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Doadores de Tecidos , Obtenção de Tecidos e Órgãos/métodos , Aloenxertos , Animais , Apoptose , Morte Encefálica , China , Morte , Parada Cardíaca , Hepatócitos/patologia , Hepatócitos/ultraestrutura , Humanos , Marcação In Situ das Extremidades Cortadas , Fígado/patologia , Fígado/ultraestrutura , Microscopia Eletrônica , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...