Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38140408

RESUMO

Actinidia chinensis Planch. is a fruit tree originating from China that is abundant in the wild. Actinidia eriantha Benth. is a type of A. chinensis that has emerged in recent years. The shape of A. eriantha is an elongated oval, and the skin is covered with dense, non-shedding milk-white hairs. The mature fruit has flesh that is bright green in colour, and the fruit has a strong flavour and a grass-like smell. It is appreciated for its rich nutrient content and unique flavour. Vitamin C, sugar, and organic acids are key factors in the quality and flavour composition of A. eriantha but have not yet been systematically analysed. Therefore, we sequenced the transcriptome of A. eriantha at three developmental stages and labelled them S1, S2, and S3, and comparisons of S1 vs. S2, S1 vs. S3, and S2 vs. S3 revealed 1218, 4019, and 3759 upregulated differentially expressed genes and 1823, 3415, and 2226 downregulated differentially expressed genes, respectively. Furthermore, the upregulated differentially expressed genes included 213 core genes, and Gene Ontology enrichment analysis showed that they were enriched in hormones, sugars, organic acids, and many organic metabolic pathways. The downregulated differentially expressed genes included 207 core genes, which were enriched in the light signalling pathway. We further constructed the metabolic pathways of sugars, organic acids, and vitamin C in A. eriantha and identified the genes involved in vitamin C, sugar, and organic acid synthesis in A. eriantha fruits at different stages. During fruit development, the vitamin C content decreased, the carbohydrate compound content increased, and the organic acid content decreased. The gene expression patterns were closely related to the accumulation patterns of vitamin C, sugars, and organic acids in A. eriantha. The above results lay the foundation for the accumulation of vitamin C, sugars, and organic acids in A. eriantha and for understanding flavour formation in A. eriantha.

2.
Front Plant Sci ; 12: 778848, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185948

RESUMO

Seed development is closely related to plant production and reproduction, and MicroRNAs (miRNA) is widely involved in plant development including seed development. Chinese kale, as a Brassicaceae vegetable, mainly depends on seed for proper reproduction. In the present study, Chinese kale seed and silique at different stages were selected to establish small RNA (sRNA) libraries including silique wall sRNA libraries at torpedo-embryo stage (PC), silique wall sRNA libraries at cotyledonary-embryo stage (PD), seed sRNA libraries at torpedo-embryo stage (SC), and seed sRNA libraries at cotyledonary-embryo stage (SD). The results showed that miRNA expressed differentially in the seeds and corresponding siliques at different stages. To further clarify the functional mode of miRNA in the process of seed development, Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis was performed on target genes of the differentially expressed miRNAs, and these target genes were mainly enriched in plant hormone signal transduction, primary and secondary metabolic pathways. After joint analysis with the transcriptome change of the corresponding period, miR156-SPL10/SPL11, miR395-APS3, and miR397-LAC2/LAC11 modules were identified to be directly involved in the development of Chinese kale seeds. What's more, modified 5'RLM-RACE and Agrobacteria-mediated Chinese kale transient transformation suggest miR395b_2 is involved in sulfur metabolism during seed development by regulating its target gene APS3.

3.
Front Plant Sci ; 11: 589746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510744

RESUMO

To determine the response of Chinese kale (Brassica alboglabra) sprouts to photoperiods under different light sources, we used four photoperiods (0-h light/24-h dark, 8-h light/16-h dark, 12-h light/12-h dark, and 16-h light/8-h dark) to investigate their sprout growth and secondary metabolite glucosinolates (GSs) accumulation under white or combined red-and-blue (RB) light sources. We found that the 16-h light condition under RB light produced plants with the greatest dry matter. Sprouts grown under 16-h RB light condition achieved greater length than those under white light. To investigate the role of RB light in plant growth and GS accumulation, we applied RB light sources with different RB ratios (0:10, 2:8, 5:5, 8:2, and 10:0) to cultivate sprouts. The results showed that significant differential accumulation of GSs existed between sprouts grown under blue (RB, 0:10) and red (RB, 10:0) light; there was greater GS content under blue light. The underlying mechanism of differential GS content in sprouts under red or blue light condition was studied using RNA sequencing technique. Interestingly, abundant GS biosynthetic gene transcripts were observed in sprouts grown under red light compared with under blue light. The expression of ß-glucosidase family homolog genes related to GS degradation differed under red and blue light conditions, among those TGG4 homolog was detected with higher expression under red light than with blue light. Taking into consideration, the lower GS accumulation in sprouts under red rather than blue light, we conclude that the degradation of GSs may play a key role in sprouts GS homeostasis.

4.
Biochem Biophys Res Commun ; 497(2): 749-755, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29462612

RESUMO

Mg chelatase, a key enzyme in chlorophyll biosynthesis, is comprised of I, D and H subunits. Among these subunits, the D subunit was regarded to mediate protein interactions due to its unique protein domains. However, the functional roles of the different domains of the D subunit in vivo remain unclear. In this study, we dissected the rice (Oryza sativa) D subunit (OsCHLD) into three peptide fragments: the putative chloroplast transit peptide (TP, Met1 to Arg45), the N-terminus plus linker domain (OsCHLDN + L, Ala46 to Leu485) and the C-terminus (OsCHLDC, Ile486 to Ser754), to explore the roles of these fragments. The results of the yeast two-hybrid assay and the in vitro reconstitution of the Mg-chelatase activity showed that only OsCHLDN + L interacted with the I and H subunits and maintained most of the Mg-chelatase activity in vitro. Furthermore, artificial TP-OsCHLDN + L and TP-OsCHLDC were overexpressed in rice. Interestingly, an incomplete co-suppression had occurred in both of the overexpressed (OsCHLDN + L-ox and OsCHLDC-ox) plants, resulting in a significantly downregulated expression of endogenous OsCHLD. Therefore, these transgenic plants had adequate OsCHLDN + L and OsCHLDC instead of endogenous OsCHLD, providing ideal models to study the function of different domains of the D subunit in vivo. The OsCHLDN + L-ox plants showed an identical phenotype to that of the wild type, while the OsCHLDC-ox plants demonstrated a yellowish phenotype that resembled the D subunit mutants. These results indicated that only OsCHLDN + L could complement the function of endogenous OsCHLD, providing direct evidence that OsCHLDN + L is essential for Mg-chelatase activity in vivo.


Assuntos
Liases/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/química , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Liases/química , Liases/genética , Oryza/química , Oryza/genética , Oryza/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...