Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mob DNA ; 13(1): 9, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395947

RESUMO

BACKGROUND: We carry out a review of the history and biological activities of one domesticated gene in higher primates, SETMAR, by discussing current controversies. Our purpose is to open a new outlook that will serve as a framework for future work about SETMAR, possibly in the field of cognition development. MAIN BODY: What is newly important about SETMAR can be summarized as follows: (1) the whole protein sequence is under strong purifying pressure; (2) its role is to strengthen existing biological functions rather than to provide new ones; (3) it displays a tissue-specific pattern of expression, at least for the alternative-splicing it undergoes. Studies reported here demonstrate that SETMAR protein(s) may be involved in essential networks regulating replication, transcription and translation. Moreover, during embryogenesis, SETMAR appears to contribute to brain development. SHORT CONCLUSION: Our review underlines for the first time that SETMAR directly interacts with genes involved in brain functions related to vocalization and vocal learning. These findings pave the way for future works regarding SETMAR and the development of cognitive abilities in higher primates.

2.
PLoS Genet ; 17(6): e1009583, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34125833

RESUMO

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células HEK293 , Humanos , Mutação , Fosforilação , Transporte Proteico , Subunidades Ribossômicas Menores/metabolismo , Transdução de Sinais , Especificidade por Substrato , Transcrição Gênica
3.
Front Oncol ; 11: 638397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047379

RESUMO

Recent evidence suggests that the chimeric protein SETMAR is a factor of interest in cancer, especially in glioblastoma. However, little is known about the expression of this protein in glioblastoma tissues, and no study has been done to assess if SETMAR could be a prognostic and/or diagnostic marker of glioblastoma. We analyzed protein extracts of 47 glioblastoma samples coming from a local and a national cohort of patients. From the local cohort, we obtained localized biopsies from the central necrosis area, the tumor, and the perilesional brain. From the French Glioblastoma Biobank (FGB), we obtained three types of samples: from the same tumors before and after treatment, from long survivors, and from very short survivors. We studied the correlations between SETMAR amounts, clinical profiles of patients and other associated proteins (PTN, snRNP70 and OLIG2). In glioblastoma tissues, the shorter isoform of SETMAR (S-SETMAR) was predominant over the full-length isoform (FL-SETMAR), and the expression of both SETMAR variants was higher in the tumor compared to the perilesional tissues. Data from the FGB showed that SETMAR amounts were not different between the initial tumors and tumor relapses after treatment. These data also showed a trend toward higher amounts of S-SETMAR in long survivors. In localized biopsies, we found a positive correlation between good prognosis and large amounts of S-SETMAR in the perilesional area. This is the main result presented here: survival in Glioblastoma is correlated with amounts of S-SETMAR in perilesional brain, which should be considered as a new relevant prognosis marker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...