Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 086101, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457702

RESUMO

The exploration of solid-solid phase transition suffers from the uncertainty of how atoms in two crystal structures match. We devised a theoretical framework to describe and classify crystal-structure matches (CSM). Such description fully exploits the translational and rotational symmetries and is independent of the choice of supercells. This is enabled by the use of the Hermite normal form, an analog of reduced echelon form for integer matrices. With its help, exhausting all CSMs is made possible, which goes beyond the conventional optimization schemes. In an example study of the martensitic transformation of steel, our enumeration algorithm finds many candidate CSMs with lower strains than known mechanisms. Two long-sought CSMs accounting for the most commonly observed Kurdjumov-Sachs orientation relationship and the Nishiyama-Wassermann orientation relationship are unveiled. Given the comprehensiveness and efficiency, our enumeration scheme provide a promising strategy for solid-solid phase transition mechanism research.

2.
Phys Rev E ; 109(2-1): 024118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491632

RESUMO

The supercritical region is often described as uniform with no definite transitions. The distinct behaviors of the matter therein, e.g., as liquidlike and gaslike, however, suggest "supercritical boundaries." Here we provide a mathematical description of these phenomena by revisiting the Yang-Lee theory and introducing a complex phase diagram, specifically a four-dimensional (4D) one with complex T and p. While the traditional 2D phase diagram with real temperature T and pressure p values (the physical plane) lacks Lee-Yang (LY) zeros beyond the critical point, preventing the occurrence of criticality, the off-plane zeros in this 4D scenario still induce critical anomalies in various physical properties. This relationship is evidenced by the correlation between the Widom line and LY edges in van der Waals, 2D Ising model, and water. The diverged supercritical boundaries manifest the high-dimensional feature of the phase diagram: e.g., when LY zeros of complex T or p are projected onto the physical plane, boundaries defined by isobaric heat capacity C_{p} or isothermal compression coefficient K_{T} emanates. These results demonstrate the incipient phase transition nature of the supercritical matter.

3.
Nat Commun ; 14(1): 7447, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978192

RESUMO

The atomic-thick anticorrosion coating for copper (Cu) electrodes is essential for the miniaturisation in the semiconductor industry. Graphene has long been expected to be the ultimate anticorrosion material, however, its real anticorrosion performance is still under great controversy. Specifically, strong electronic couplings can limit the interfacial diffusion of corrosive molecules, whereas they can also promote the surficial galvanic corrosion. Here, we report the enhanced anticorrosion for Cu simply via a bilayer graphene coating, which provides protection for more than 5 years at room temperature and 1000 h at 200 °C. Such excellent anticorrosion is attributed to a nontrivial Janus-doping effect in bilayer graphene, where the heavily doped bottom layer forms a strong interaction with Cu to limit the interfacial diffusion, while the nearly charge neutral top layer behaves inertly to alleviate the galvanic corrosion. Our study will likely expand the application scenarios of Cu under various extreme operating conditions.

4.
Sci Adv ; 9(31): eadf8484, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531436

RESUMO

Transferred graphene provides a promising III-nitride semiconductor epitaxial platform for fabricating multifunctional devices beyond the limitation of conventional substrates. Despite its tremendous fundamental and technological importance, it remains an open question on which kind of epitaxy is preferred for single-crystal III-nitrides. Popular answers to this include the remote epitaxy where the III-nitride/graphene interface is coupled by nonchemical bonds, and the quasi-van der Waals epitaxy (quasi-vdWe) where the interface is mainly coupled by covalent bonds. Here, we show the preferred one on wet-transferred graphene is quasi-vdWe. Using aluminum nitride (AlN), a strong polar III-nitride, as an example, we demonstrate that the remote interaction from the graphene/AlN template can inhibit out-of-plane lattice inversion other than in-plane lattice twist of the nuclei, resulting in a polycrystalline AlN film. In contrast, quasi-vdWe always leads to single-crystal film. By answering this long-standing controversy, this work could facilitate the development of III-nitride semiconductor devices on two-dimensional materials such as graphene.

5.
Front Genet ; 14: 1168138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37593115

RESUMO

Pumpkin (Cucurbita moschata Duch.) productivity is severely hindered by powdery mildew (PM) worldwide. The causative agent of pumpkin PM is Podosphaera xanthii, a biotrophic fungus. Pathogenesis-related protein 1 (PR1) homolog was previously identified from transcriptomic analysis of a PM-resistant pumpkin. Here, we investigated the effects of CmPR1 gene from pumpkin for resistance to PM. Subcellular localization assay revealed that CmPR1 is a cytoplasmic protein in plants. The expression of CmPR1 gene was strongly induced by P. xanthii inoculation at 48 h and exogenous ethylene (ET), jasmonic acid (JA) and NaCl treatments, but repressed by H2O2 and salicylic acid (SA) treatments. Visual disease symptoms, histological observations of fungal growth and host cell death, and accumulation of H2O2 in transgenic tobacco plants indicated that CmPR1 overexpression significantly enhanced the resistance to Golovinomyces cichoracearum compared to wild type plants during PM pathogens infection, possibly due to inducing cell death and H2O2 accumulation near infected sites. The expression of PR1a was significantly induced in transgenic tobacco plants in response to G. cichoracearum, suggesting that CmPR1 overexpression positively modulates the resistance to PM via the SA signaling pathway. These findings indicate that CmPR1 is a defense response gene in C. moschata and can be exploited to develop disease-resistant crop varieties.

6.
ACS Appl Mater Interfaces ; 15(29): 35631-35638, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436846

RESUMO

The integration and miniaturization of contemporary electronics have led to significant challenges in dealing with electromagnetic (EM) radiation and heat accumulation. Despite these issues, achieving high thermal conductivity (TC) and electromagnetic interference (EMI) shielding effectiveness (SE) in polymer composite films remains an exceptionally difficult task. In this work, we used a straightforward in situ reduction process and a vacuum-drying method to successfully prepare a flexible Ag NPs/chitosan (CS)/PVA nanocomposite with three-dimensional (3D) conductive and thermally conductive network architectures. The 3D silver pathways formed by attaching to the chitosan fibers endow the material with simultaneous exceptional TC and EMI capabilities. At a silver concentration of 25 vol %, the TC of Ag NPs/CS/PVA nanocomposites reaches 5.18 W·m-1·K-1, exhibiting an approximately 25 times increase compared to CS/PVA composites. The electromagnetic shielding performance of 78.5 dB significantly outperforms the specifications of standard commercial EMI shielding applications by a significant margin. Additionally, Ag NPs/CS/PVA nanocomposites have greatly benefited from microwave absorption (SEA), effectively impeding the transmission of EM waves and reducing the reflected secondary EM wave pollution. Meanwhile, the composite material still maintains good mechanical properties and bendability. This endeavor helped develop malleable and durable composites that possess superior EMI shielding capabilities and intriguing heat dissipation properties using innovative design and fabrication methods.

7.
J Mater Chem B ; 11(33): 7950-7960, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37491975

RESUMO

Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.


Assuntos
Biomimética , Filtração , Osmose , Água/química , Oxirredução
8.
J Chem Phys ; 158(22)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37290067

RESUMO

Tunneling splittings observed in molecular rovibrational spectra are significant evidence for tunneling motion of hydrogen nuclei in water clusters. Accurate calculations of the splitting sizes from first principles require a combination of high-quality inter-atomic interactions and rigorous methods to treat the nuclei with quantum mechanics. Many theoretical efforts have been made in recent decades. This Perspective focuses on two path-integral based tunneling splitting methods whose computational cost scales well with the system size, namely, the ring-polymer instanton method and the path-integral molecular dynamics (PIMD) method. From a simple derivation, we show that the former is a semiclassical approximation to the latter, despite that the two methods are derived very differently. Currently, the PIMD method is considered to be an ideal route to rigorously compute the ground-state tunneling splitting, while the instanton method sacrifices some accuracy for a significantly smaller computational cost. An application scenario of such a quantitatively rigorous calculation is to test and calibrate the potential energy surfaces of molecular systems by spectroscopic accuracy. Recent progress in water clusters is reviewed, and the current challenges are discussed.


Assuntos
Teoria Quântica , Água , Simulação de Dinâmica Molecular , Hidrogênio/química , Polímeros
9.
Nat Commun ; 14(1): 2382, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185918

RESUMO

Isotopic mixtures result in distinct properties of materials such as thermal conductivity and nuclear process. However, the knowledge of isotopic interface remains largely unexplored mainly due to the challenges in atomic-scale isotopic identification. Here, using electron energy-loss spectroscopy in a scanning transmission electron microscope, we reveal momentum-transfer-dependent phonon behavior at the h-10BN/h-11BN isotope heterostructure with sub-unit-cell resolution. We find the phonons' energy changes gradually across the interface, featuring a wide transition regime. Phonons near the Brillouin zone center have a transition regime of ~3.34 nm, whereas phonons at the Brillouin zone boundary have a transition regime of ~1.66 nm. We propose that the isotope-induced charge effect at the interface accounts for the distinct delocalization behavior. Moreover, the variation of phonon energy between atom layers near the interface depends on both of momentum transfer and mass change. This study provides new insights into the isotopic effects in natural materials.

10.
ACS Appl Mater Interfaces ; 15(14): 18550-18558, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010144

RESUMO

Covalent organic frameworks (COFs), with ordered pores and well-defined topology, are ideal materials for nanofiltration (NF) membranes because of their capacity of transcending the permeance/selectivity trade-off predicament. However, most reported COF-based membranes are focused on separating molecules with different sizes, resulting in low selectivity to similar molecules with different charges. Here, the negatively charged COF layer was fabricated in situ on a microporous support for the separation of molecules with different sizes and charges. Ultrahigh water permeance (216.56 L m-2 h-1 bar-1) was obtained because of the ordered pores and excellent hydrophilicity, which exceeds that of most membranes with similar rejections. For the first time, we used multifarious dyes with different sizes and charges, for the investigation of the selectivity behavior caused by the Donnan effect and size exclusion. The obtained membranes represent superior rejections to negatively and neutrally charged dyes larger than 1.3 nm, while positively charged dyes with a size of 1.6 nm can pass through the membrane, resulting in the separation of negative/positive mixed dyes with similar molecular sizes. This strategy of combining the Donnan effect and size exclusion in nanoporous materials may evolve into a generic platform for sophisticated separation.

11.
J Phys Chem A ; 127(13): 2902-2911, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36949622

RESUMO

We applied the harmonic inversion technique to extract vibrational eigenvalues from the semiclassical initial value representation (SC-IVR) propagator of molecular systems described by explicit potential surfaces. The cross-correlation filter-diagonalization (CCFD) method is used for the inversion problem instead of the Fourier transformation, which allows much shorter propagation time and is thus capable of avoiding numerical divergence issues while getting rid of approximations like the separable one to the pre-exponential factor. We also used the "Divide-and-Conquer" technique to control the total dimensions under consideration, which helps to further enhance the numerical behavior of SC-IVR calculations and the stability of harmonic inversion methods. The technique is tested on small molecules and water trimer to justify its applicability and reliability. Results show that the CCFD method can effectively extract the vibrational eigenvalues from short trajectories and reproduce the original spectra conventionally obtained from long-time ones, with no loss on accuracy while the numerical behavior is much better. This work demonstrates the possibility to apply the combined method of CCFD and SC-IVR to real molecular potential surfaces, which might be a new way to overcome the numerical instabilities caused by the increase of dimensions.

12.
J Am Chem Soc ; 144(46): 21356-21362, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36350126

RESUMO

Using a full-dimensional quantum method for nuclei and a new first-principles water potential, we show that the torsional tunneling splitting in a water trimer can be reproduced with accuracy up to ∼1 cm-1. We quantify the coupling constants of the nuclear quantum states between nonadjacent wells and show that they are the main reason for shifting the quartet-split levels in spectra from a 1:2:1 spacing. This demonstrates the limitation of treatments using simplified models such as the Hückel model and emphasizes the nonlocal nature of the quantum interactions in this system. With such an ab initio endeavor, we examine the quality of the water potential developed and provide a rigorous scheme to decipher the experimental spectra with unprecedented accuracy, which is applicable to more general systems.

13.
ACS Appl Mater Interfaces ; 14(39): 44282-44291, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36153961

RESUMO

The exploitation of M-NX sites, where M is a transition metal atom, is widely regarded as an effective catalytic strategy to promote the oxygen reduction reaction (ORR). In addition, some studies have shown that transition metal nanoparticles (M-NPs) coated with carbon layers can improve the reactivity of ORR and ameliorate the overpotential of the reaction. In this study, we synthesized carbon nanotubes with single-atom Co-NX active sites, Co-NPs outside the tube, and Co-NPs wrapped in the tube by the complexation-pyrolysis synthesis method and explored the role of the particles and Co-NX sites through different pickling steps. The catalyst synthesized with the new stratagem in this study shows outstanding selectivity and also ORR activity. Furthermore, a natural air diffusion electrode fabricated using this material can produce H2O2 at 323 mg L-1 h-1 under neutral conditions without oxygen aeration.

14.
Science ; 377(6603): 315-319, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857595

RESUMO

The nature of hydrated proton on solid surfaces is of vital importance in electrochemistry, proton channels, and hydrogen fuel cells but remains unclear because of the lack of atomic-scale characterization. We directly visualized Eigen- and Zundel-type hydrated protons within the hydrogen bonding water network on Au(111) and Pt(111) surfaces, using cryogenic qPlus-based atomic force microscopy under ultrahigh vacuum. We found that the Eigen cations self-assembled into monolayer structures with local order, and the Zundel cations formed long-range ordered structures stabilized by nuclear quantum effects. Two Eigen cations could combine into one Zundel cation accompanied with a simultaneous proton transfer to the surface. Moreover, we revealed that the Zundel configuration was preferred over the Eigen on Pt(111), and such a preference was absent on Au(111).

15.
Sci Adv ; 8(24): eabo2675, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35714193

RESUMO

Understanding how the nuclear quantum effects (NQEs) in the hydrogen bond (H-bond) network influence the photoexcited charge transfer at semiconductor/molecule interface is a challenging problem. By combining two kinds of emerging molecular dynamics methods at the ab initio level, the path integral-based molecular dynamics and time-dependent nonadiabatic molecular dynamics, and choosing CH3OH/TiO2 as a prototypical system to study, we find that the quantum proton motion in the H-bond network is strongly coupled with the ultrafast photoexcited charge dynamics at the interface. The hole trapping ability of the adsorbed methanol molecule is notably enhanced by the NQEs, and thus, it behaves as a hole scavenger on titanium dioxide. The critical role of the H-bond network is confirmed by in situ scanning tunneling microscope measurements with ultraviolet light illumination. It is concluded the quantum proton motion in the H-bond network plays a critical role in influencing the energy conversion efficiency based on photoexcitation.

16.
J Chem Phys ; 156(12): 124304, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364863

RESUMO

Isotope substitution is an important experimental technique that offers deep insight into reaction mechanisms, as the measured kinetic isotope effects (KIEs) can be directly compared with theory. For multiple proton transfer processes, there are two types of mechanisms: stepwise transfer and concerted transfer. The Bell-Limbach model provides a simple theory to determine whether the proton transfer mechanism is stepwise or concerted from KIEs. Recent scanning tunneling microscopy (STM) experiments have studied the proton switching process in water tetramers on NaCl(001). Theoretical studies predict that this process occurs via a concerted mechanism; however, the experimental KIEs resemble the Bell-Limbach model for stepwise tunneling, raising questions on the underlying mechanism or the validity of the model. We study this system using ab initio instanton theory, and in addition to thermal rates, we also considered microcanonical rates, as well as tunneling splittings. The instanton theory predicts a concerted mechanism, and the KIEs for tunneling rates (both thermal and microcanonical) upon deuteration are consistent with the Bell-Limbach model for concerted tunneling but could not explain the experiments. For tunneling splittings, partial and full deuteration change the size of it in a similar fashion to how they change the rates. We further examined the Bell-Limbach model in another system, porphycene, which has both stepwise and concerted tunneling pathways. The KIEs predicted by instanton theory are again consistent with the Bell-Limbach model. This study highlights differences between KIEs in stepwise and concerted tunneling and the discrepancy between theory and recent STM experiments. New theory/experiments are desired to settle this problem.

17.
Nano Lett ; 22(7): 2725-2733, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293751

RESUMO

In van der Waals (vdW) heterostructures, the interlayer electron-phonon coupling (EPC) provides one unique channel to nonlocally engineer these elementary particles. However, limited by the stringent occurrence conditions, the efficient engineering of interlayer EPC remains elusive. Here we report a multitier engineering of interlayer EPC in WS2/boron nitride (BN) heterostructures, including isotope enrichments of BN substrates, temperature, and high-pressure tuning. The hyperfine isotope dependence of Raman intensities was unambiguously revealed. In combination with theoretical calculations, we anticipate that WS2/BN supercells could induce Brillouin-zone-folded phonons that contribute to the interlayer coupling, leading to a complex nature of broad Raman peaks. We further demonstrate the significance of a previously unexplored parameter, the interlayer spacing. By varying the temperature and high pressure, we effectively manipulated the strengths of EPC with on/off capabilities, indicating critical thresholds of the layer-layer spacing for activating and strengthening interlayer EPC. Our findings provide new opportunities to engineer vdW heterostructures with controlled interlayer coupling.

18.
Nat Commun ; 13(1): 216, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017521

RESUMO

Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the electrical polarization response to mechanical strain gradients that is not restricted by the symmetry of materials. However, large elastic deformation is usually difficult to achieve in most solids, and the strain gradient at minuscule is challenging to control. Here, we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~1.2 nm-1) within 3-4-unit cells, and thus obtain atomic-scale flexoelectric polarization of up to ~38 µC cm-2 at a 24° LaAlO3 grain boundary. Accompanied by the generation of the nanoscale flexoelectricity, the electronic structures of grain boundaries also become different. Hence, the flexoelectric effect at grain boundaries is essential to understand the electrical activities of oxide ceramics. We further demonstrate that for different materials, altering the misorientation angles of grain boundaries enables tunable strain gradients at the atomic scale. The engineering of grain boundaries thus provides a general and feasible pathway to achieve tunable flexoelectricity.

19.
Adv Mater ; 34(5): e2106814, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757663

RESUMO

Quasi van der Waals epitaxy, a pioneering epitaxy of sp3 -hybridized semiconductor films on sp2 -hybridized 2D materials, provides a way, in principle, to achieve single-crystal epilayers with preferred atom configurations that are free of substrate. Unfortunately, this has not been experimentally confirmed in the case of the hexagonal semiconductor III-nitride epilayer until now. Here, it is reported that the epitaxy of gallium nitride (GaN) on graphene can tune the atom arrangement (lattice polarity) through manipulation of the interface atomic configuration, where GaN films with gallium and nitrogen polarity are achieved by forming CONGa(3) or COGaN(3) configurations, respectively, on artificial CO surface dangling bonds by atomic oxygen pre-irradiation on trilayer graphene. Furthermore, an aluminum nitride buffer/interlayer leads to unique metal polarity due to the formation of an AlON thin layer in a growth environment containing trace amounts of oxygen, which explains the open question of why those reported wurtzite III-nitride films on 2D materials always exhibit metal polarity. The reported atomic modulation through interface manipulation provides an effective model for hexagonal nitride semiconductor layers grown on graphene, which definitely promotes the development of novel semiconductor devices.

20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...