Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400514, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004943

RESUMO

The primary objective of this work is to develop a sustainable biocatalytic transesterification process for low-grade oils, aligning with EU green technology requirements for the shift to second generation biodiesel. Thus, we investigated the immobilization and subsequent application of the lipase Biolipasa-R on transesterification processes to produce fatty acid methyl esters (FAMEs) from both a sunflower oil and an acid oil which is a bioproduct of the biodiesel industry. The lipase was immobilized on biomaterials, such as diatomaceous earth, with a yield of 60%, and commercial carriers such as methacrylic resins with a yield of 100%. The enzyme demonstrated superior activity when immobilized on diatomaceous earth, particularly in reactions involving the acid oil, outperforming the benchmark enzyme Novozym® 435 (95.1% and 35% conversion respectively). This work highlights the potential of Biolipasa-R as a cost-effective and efficient biocatalyst for biodiesel production and emphasizes the environmental benefits of utilizing industrial byproducts and eco-friendly immobilization techniques. The findings suggest that Biolipasa-R is a promising candidate for industrial applications in biodiesel production, offering a sustainable solution for waste management and energy generation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...