Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865273

RESUMO

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Assuntos
Dendrímeros , Flúor , Nanomedicina Teranóstica , Dendrímeros/química , Animais , Nanomedicina Teranóstica/métodos , Humanos , Camundongos , Flúor/química , Paclitaxel/química , Paclitaxel/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Imagem por Ressonância Magnética de Flúor-19/métodos , Camundongos Nus , Meios de Contraste/química
2.
Adv Mater ; 36(7): e2308262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030568

RESUMO

Bioimaging is a powerful tool for diagnosing tumors but remains limited in terms of sensitivity and specificity. Nanotechnology-based imaging probes able to accommodate abundant imaging units with different imaging modalities are particularly promising for overcoming these limitations. In addition, the nanosized imaging agents can specifically increase the contrast of tumors by exploiting the enhanced permeability and retention effect. A proof-of-concept study is performed on pancreatic cancer to demonstrate the use of modular amphiphilic dendrimer-based nanoprobes for magnetic resonance (MR) imaging (MRI) or MR/near-infrared fluorescence (NIRF) multimodality imaging. Specifically, the self-assembly of an amphiphilic dendrimer bearing multiple Gd3+ units at its terminals, generates a nanomicellar agent exhibiting favorable relaxivity for MRI with a good safety profile. MRI reveals an up to two-fold higher contrast enhancement in tumors than in normal muscle. Encapsulating the NIRF dye within the core of the nanoprobe yields an MR/NIRF bimodal imaging agent for tumor detection that is efficient both for MRI, at Gd3+ concentrations 1/10 the standard clinical dose, and for NIRF imaging, allowing over two-fold stronger fluorescence intensities. These self-assembling dendrimer nanosystems thus constitute effective probes for MRI and MR/NIRF multimodality imaging, offering a promising nanotechnology platform for elaborating multimodality imaging probes in biomedical applications.


Assuntos
Dendrímeros , Neoplasias Pancreáticas , Humanos , Meios de Contraste , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Neoplasias Pancreáticas/diagnóstico por imagem
3.
Proc Natl Acad Sci U S A ; 120(21): e2220787120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186846

RESUMO

Nucleic acid therapeutics are becoming an important drug modality, offering the unique opportunity to address "undruggable" targets, respond rapidly to evolving pathogens, and treat diseases at the gene level for precision medicine. However, nucleic acid therapeutics have poor bioavailability and are chemolabile and enzymolabile, imposing the need for delivery vectors. Dendrimers, by virtue of their well-defined structure and cooperative multivalence, represent precision delivery systems. We synthesized and studied bola-amphiphilic dendrimers for cargo-selective and on-demand delivery of DNA and small interfering RNA (siRNA), both important nucleic acid therapeutics. Remarkably, superior performances were achieved for siRNA delivery with the second-generation dendrimer, yet for DNA delivery with the third generation. We systematically studied these dendrimers with regard to cargo binding, cellular uptake, endosomal release, and in vivo delivery. Differences in size both of the dendrimers and their nucleic acid cargos impacted the cooperative multivalent interactions for cargo binding and release, leading to cargo-adaptive and selective delivery. Moreover, both dendrimers harnessed the advantages of lipid and polymer vectors, while offering nanotechnology-based tumor targeting and redox-responsive cargo release. Notably, they allowed tumor- and cancer cell-specific delivery of siRNA and DNA therapeutics for effective treatment in different cancer models, including aggressive and metastatic malignancies, outperforming the currently available vectors. This study provides avenues to engineer tailor-made vectors for nucleic acid delivery and precision medicine.


Assuntos
Dendrímeros , Neoplasias , Ácidos Nucleicos , Humanos , Dendrímeros/química , Ácidos Nucleicos/química , RNA Interferente Pequeno/metabolismo , DNA , RNA de Cadeia Dupla
4.
Pharmaceutics ; 13(7)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34371783

RESUMO

Despite being a mainstay of clinical cancer treatment, chemotherapy is limited by its severe side effects and inherent or acquired drug resistance. Nanotechnology-based drug-delivery systems are widely expected to bring new hope for cancer therapy. These systems exploit the ability of nanomaterials to accumulate and deliver anticancer drugs at the tumor site via the enhanced permeability and retention effect. Here, we established a novel drug-delivery nanosystem based on amphiphilic peptide dendrimers (AmPDs) composed of a hydrophobic alkyl chain and a hydrophilic polylysine dendron with different generations (AmPD KK2 and AmPD KK2K4). These AmPDs assembled into nanoassemblies for efficient encapsulation of the anti-cancer drug doxorubicin (DOX). The AmPDs/DOX nanoformulations improved the intracellular uptake and accumulation of DOX in drug-resistant breast cancer cells and increased permeation in 3D multicellular tumor spheroids in comparison with free DOX. Thus, they exerted effective anticancer activity while circumventing drug resistance in 2D and 3D breast cancer models. Interestingly, AmPD KK2 bearing a smaller peptide dendron encapsulated DOX to form more stable nanoparticles than AmPD KK2K4 bearing a larger peptide dendron, resulting in better cellular uptake, penetration, and anti-proliferative activity. This may be because AmPD KK2 maintains a better balance between hydrophobicity and hydrophilicity to achieve optimal self-assembly, thereby facilitating more stable drug encapsulation and efficient drug release. Together, our study provides a promising perspective on the design of the safe and efficient cancer drug-delivery nanosystems based on the self-assembling amphiphilic peptide dendrimer.

5.
Chem Commun (Camb) ; 56(69): 10014-10017, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32724994

RESUMO

Novel nucleoside derivatives were developed using the strategy of "terminal N,N-dimethylation" to impart tertiary amines to a 1,2,4-triazole nucleoside. The obtained lead compounds displayed significantly improved anticancer activity with dual mechanisms of cell death via apoptosis and autophagy, offering a fresh perspective to searching for new anticancer candidates.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Nucleosídeos/análogos & derivados , Triazóis/química , Antineoplásicos/química , Linhagem Celular Tumoral , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Nucleosídeos/farmacologia
6.
Eur J Med Chem ; 190: 112105, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035399

RESUMO

A novel series of shikonin-benzo[b]furan derivatives were designed and synthesized as tubulin polymerization inhibitors, and their biological activities were evaluated. Most compounds revealed the comparable anti-proliferation activities against the cancer cell lines to that of shikonin and simultaneously low cytotoxicity to non-cancer cells. Among them, compound 6c displayed powerful anti-cancer activity with the IC50 value of 0.18 µM against HT29 cells, which was significantly better than that of the reference drugs shikonin and CA-4. What's more, 6c could inhibit tubulin polymerization and compete with [3H] colchicine in binding to tubulin. Further biological studies depicted that 6c can induce cell apoptosis and cell mitochondria depolarize, regulate the expression of apoptosis related proteins in HT29 cells. Besides, 6c actuated the HT29 cell cycle arrest at G2/M phase, and influenced the expression of the cell-cycle related protein. Moreover, 6c displayed potent inhibition on cell migration and tube formation that contributes to the antiangiogenesis. These results prompt us to consider 6c as a potential tubulin polymerization inhibitor and is worthy for further study.


Assuntos
Benzofuranos/farmacologia , Naftoquinonas/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Benzofuranos/síntese química , Benzofuranos/metabolismo , Benzofuranos/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Naftoquinonas/toxicidade , Ligação Proteica , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/toxicidade
7.
Bioorg Chem ; 93: 103319, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585270

RESUMO

A novel series of resveratrol-cinnamoyl hybrids as tubulin polymerization inhibitors were designed and synthesized, and evaluated for their anti-proliferative activities against A549, MCF-7, HepG2, HeLa and MDA-MB-231 five cancer cell lines. Most designed compounds showed better anti-proliferative activities. Particularly, compound 6h exhibited the potent anti-proliferative activities with the IC50 value of 0.12, 0.016, 0.44, 0.37 and 0.78 µΜ against A549, MCF-7, HepG2, HeLa and MDA-231, respectively, which was superior to that of reference drug colchicine. Besides, compound 6h displayed a remarkable inhibition of tubulin polymerization and a great potency to compete with [3H] colchicine in binding to tubulin. Further studies indicated that compound 6h could induce the MCF-7 cells arrest in the G2/M phase. What' more, compound 6h induced cell apoptosis in a dose-dependent manner, and regulated the expression level of apoptosis-related proteins. These results revealed that compound 6h is a promising tubulin polymerization inhibitor for treatment of cancer and it is worthy of further exploitation.


Assuntos
Cinamatos/química , Colchicina/metabolismo , Desenho de Fármacos , Resveratrol/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Células MCF-7 , Simulação de Acoplamento Molecular , Moduladores de Tubulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...