Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1166635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063280

RESUMO

The imbalance of gut microbiota has been confirmed to have a close pathological and physiological correlation with obesity and metabolic syndrome. Ramulus Mori (Sangzhi) Alkaloids (SZ-A) derived from twigs of mulberry was approved by the National Medical Products Administration of China in 2020 for the treatment of type 2 diabetes mellitus. In addition to its hypoglycemic effect, previous studies have confirmed that SZ-A also alleviates high-fat diet-induced obesity and non-alcoholic fatty liver disease and ameliorates obesity-linked adipose tissue metabolism and inflammation, indicating the potential of SZ-A to regulate obesity and metabolic syndrome. However, whether SZ-A can improve obesity and metabolic syndrome by regulating gut microbiota and its metabolism profiles remains unclear. The purpose of this study was to assess the effect of SZ-A on gut microbiota in obese mice and to explore the association among changes in gut microbiota, obesity, and lipid metabolism. The results showed that oral administration of SZ-A could significantly reduce body weight, fat mass, and the level of total cholesterol and low-density lipoprotein in serum in obese mice induced by a high-fat diet. Interestingly, SZ-A also regulated gut microbiota and changed the fecal metabolite composition of obese mice. Compared with the high-fat diet group, the ratio of Firmicutes to Bacteroides changed at the phylum level and the abundance of Bifidobacterium and Akkermansia muciniphila significantly increased at the genus level in the SZ-A group. The gut microbiota of the SZ-A group was reshaped and the relative abundance of microbial genes in bile acid metabolism and fatty acid metabolism were altered, which was consistent with the metabolomics results. Additionally, SZ-A greatly enriched the number of goblet cells and reduced inflammatory colon injury and pro-inflammatory macrophage infiltration induced by a high-fat diet in obese mice. In conclusion, SZ-A can alleviate obesity and metabolic syndrome by improving the gut microbiota and its metabolism profiles of obese mice induced by a high-fat diet.

2.
Bioeng Transl Med ; 8(1): e10357, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684101

RESUMO

Cytokine storm is a phenomenon whereby the overreaction of the human immune system leads to the release of inflammatory cytokines, which can lead to multiple organ dysfunction syndrome. At present, the existing drugs for the treatment of cytokine storm have limited efficacy and severe adverse effects. Here, we report a lymphatic targeting self-microemulsifying drug delivery system containing baicalein to effectively inhibit cytokine storm. Baicalein self-microemulsion with phospholipid complex as an intermediate carrier (BAPC-SME) prepared in this study could be spontaneously emulsified to form 12-nm oil-in-water nanoemulsion after administration. And then BAPC-SME underwent uptake by enterocyte through endocytosis mediated by lipid valve and clathrin, and had obvious characteristics of mesenteric lymph node targeting distribution. Oral administration of BAPC-SME could significantly inhibit the increase in plasma levels of 14 cytokines: TNF-α, IL-6, IFN-γ, MCP-1, IL-17A, IL-27, IL-1α, GM-CSF, MIG, IFN-ß, IL-12, MIP-3α, IL-23, and RANTES in mice experiencing systemic cytokine storm. BAPC-SME could also significantly improve the pathological injury and inflammatory cell infiltration of lung tissue in mice experiencing local cytokine storm. This study does not only provide a new lymphatic targeted drug delivery strategy for the treatment of cytokine storm but also has great practical significance for the clinical development of baicalein self-microemulsion therapies for cytokine storm.

3.
Nutrients ; 14(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501080

RESUMO

Obesity has become a global epidemic disease as it is closely associated with a chronic low-grade inflammatory state that results in metabolic dysfunction. Ramulus Mori (Sangzhi) alkaloids (SZ-A) derived from Morus alba L. were licensed to treat type 2 diabetes (T2DM) in 2020. In this study, we explored the effect of SZ-A on adipose tissue metabolism and inflammation using an obesity model induced by a high-fat diet (HFD). C57BL/6J mice were fed high fat for 14 weeks and followed by SZ-A 400 mg/kg treatment via gavage for another six weeks, during which they were still given the high-fat diet. The results showed that SZ-A notably reduced body weight and serum levels of lipid metabolism-related factors, such as triglycerides (TG) and total cholesterol (TC); and inflammation-related factors, namely tumor necrosis factor alpha (TNFα), interleukin 6 (IL6), fibrinogen activator inhibitor-1 (PAI-1), angiopoietin-2 (Ang-2), and leptin (LEP), in the HFD-induced mice. SZ-A increased the protein and mRNA expression of lipid metabolism-related factors, including phosphorylated acetyl coenzyme A carboxylase (p-ACC), phosphorylated hormone-sensitive triglyceride lipase (p-HSL), adipose triglyceride lipase (ATGL), and peroxisome proliferator-activated receptor-alpha (PPARα), in adipose tissue. Immunohistochemistry results demonstrated that SZ-A significantly reduced the infiltration of pro-inflammatory M1-type macrophages in epididymal fat. The data also suggested that SZ-A down-regulates the transcriptional levels of inflammatory factors Il6, Tnfα, monocyte chemoattractant protein-1 (Mcp1), and F4/80, and up-regulates interleukin 4 (Il4), interleukin 10 (Il10), and interleukin 13 (Il13) in adipose tissue. Overall, the results indicate that SZ-A exhibits potential in regulating lipid metabolism and ameliorating obesity-linked adipose inflammation.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Camundongos , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Inflamação/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
4.
Antioxidants (Basel) ; 11(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624769

RESUMO

Nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes mellitus (T2DM) have highly related mechanisms. Ramulus Mori (Sangzhi) alkaloids (SZ-A) from Morus alba L. were approved in 2020 for the treatment of T2DM. In this study, we examined the therapeutic effects and mechanism of SZ-A on obesity and NAFLD in mice. Mice (C57BL/6J) fed a high-fat diet (HFD) for 14 weeks were treated with SZ-A for another 6 weeks. HFD-induced weight gain was reduced by SZ-A in a dose-dependent manner. SZ-A treatment significantly stimulated adiponectin expression and secretion in adipose tissue and 3T3-L1 adipocytes. Additionally, SZ-A markedly reduced hepatic steatosis (triglyceride, total cholesterol) and expression of pro-inflammatory and pro-fibrotic genes. SZ-A regulated lipid metabolism and oxidative stress (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH)) in the liver. Palmitic acid-induced insulin resistance and lipid accumulation in HepG2 cells were also repressed by SZ-A. Collectively, SZ-A protected mice from HFD-induced NAFLD through an indirect effect of improved systemic metabolism reducing bodyweight, and a direct effect by enhancing the lipid metabolism of HepG2 cells. The weight-loss effect of SZ-A in mice was partly due to improved fatty oxidation instead of influencing food consumption.

5.
Front Immunol ; 13: 842189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251039

RESUMO

Mastitis is a common inflammatory disease caused by bacterial infection to the mammary gland that impacts human and animal health and causes economic losses. Houttuynia essential oil (HEO), extracted from Houttuynia cordata Thunb, exhibits excellent antibacterial and anti-inflammatory properties. The aim of the study was to investigate the effects of HEO and a self-microemulsion preparation of HEO (SME-HEO) on inflammation and the blood-milk barrier (BMB) in lipopolysaccharide-induced murine mastitis. HEO and SME-HEO significantly downregulated pro-inflammatory factors TNF-α and IL-1ß, upregulated anti-inflammatory factor IL-10, inhibited MPO expression, and alleviated histopathological injury in murine mammary gland tissues. Additionally, HEO and SME-HEO protected the integrity of the BMB by upregulating the expression of junction proteins ZO-1, claudin-1, claudin-3, and occludin. The anti-inflammatory effect of HEO against murine mastitis was mediated by blocking the MAPK signaling pathway and expression of iNOS. By inhibiting the release of inflammatory factors and protecting the integrity of the BMB, HEO may provide a novel treatment for mastitis.


Assuntos
Houttuynia , Mastite , Óleos Voláteis , Animais , Anti-Inflamatórios/uso terapêutico , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Mastite/induzido quimicamente , Mastite/tratamento farmacológico , Camundongos , Leite/metabolismo , Óleos Voláteis/farmacologia
6.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34272308

RESUMO

BACKGROUND: Mesenteric lymph nodes (MLNs) are critical draining lymph nodes of the immune system that accommodate more than half of the body's lymphocytes, suggesting their potential value as a cancer immunotherapy target. Therefore, efficient delivery of immunomodulators to the MLNs holds great potential for activating immune responses and enhancing the efficacy of antitumor immunotherapy. Self-microemulsifying drug delivery systems (SMEDDS) have attracted increasing attention to improving oral bioavailability by taking advantage of the intestinal lymphatic transport pathway. Relatively little focus has been given to the lymphatic transport advantage of SMEDDS for efficient immunomodulators delivery to the MLNs. In the present study, we aimed to change the intestinal lymphatic transport paradigm from increasing bioavailability to delivering high concentrations of immunomodulators to the MLNs. METHODS: Chlorogenic acid (CHA)-encapsulated SMEDDS (CHA-SME) were developed for targeted delivery of CHA to the MLNs. The intestinal lymphatic transport, immunoregulatory effects on immune cells, and overall antitumor immune efficacy of CHA-SME were investigated through in vitro and in vivo experiments. RESULTS: CHA-SME enhanced drug permeation through intestinal epithelial cells and promoted drug accumulation within the MLNs via the lymphatic transport pathway. Furthermore, CHA-SME inhibited tumor growth in subcutaneous and orthotopic glioma models by promoting dendritic cell maturation, priming the naive T cells into effector T cells, and inhibiting the immunosuppressive component. Notably, CHA-SME induced a long-term immune memory effect for immunotherapy. CONCLUSIONS: These findings indicate that CHA-SME have great potential to enhance the immunotherapeutic efficacy of CHA by activating antitumor immune responses.


Assuntos
Ácido Clorogênico/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Vasos Linfáticos/fisiologia , Neoplasias/tratamento farmacológico , Administração Oral , Animais , Feminino , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
7.
Int J Nanomedicine ; 14: 7291-7306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564878

RESUMO

PURPOSE: The aims of this study were to prepare a baicalein self-microemulsion with baicalein-phospholipid complex as the intermediate (BAPC-SMEDDS) and to compare its effects with those of conventional baicalein self-microemulsion (CBA-SMEDDS) on baicalein oral absorption and lymphatic transport. METHODS: Two SMEDDS were characterized by emulsifying efficiency, droplet size, zeta potential, cloud point, dilution stability, physical stability, and in vitro release and lipolysis. Different formulations of 40 mg/kg baicalein were orally administered to Sprague-Dawley rats to investigate their respective bioavailabilities. The chylomicron flow blocking rat model was used to evaluate their lymphatic transport. RESULTS: The droplet sizes of BAPC-SMEDDS and CBA-SMEDDS after 100x dilution were 9.6±0.2 nm and 11.3±0.4 nm, respectively. In vivo experiments indicated that the relative bioavailability of CBA-SMEDDS and BAPC-SMEDDS was 342.5% and 448.7% compared to that of free baicalein (BA). The AUC0-t and Cmax of BAPC-SMEDDS were 1.31 and 1.87 times higher than those of CBA-SMEDDS, respectively. The lymphatic transport study revealed that 81.2% of orally absorbed BA entered the circulation directly through the portal vein, whereas approximately 18.8% was transported into the blood via lymphatic transport. CBA-SMEDDS and BAPC-SMEDDS increased the lymphatic transport ratio of BA from 18.8% to 56.2% and 70.2%, respectively. Therefore, self-microemulsion not only significantly improves oral bioavailability of baicalein, but also increases the proportion lymphatically transported. This is beneficial to the direct interaction of baicalein with relevant immune cells in the lymphatic system and for proper display of its effects. CONCLUSION: This study demonstrates the oral absorption and lymphatic transport characteristics of free baicalein and baicalein SMEDDS with different compositions. This is of great significance to studies on lymphatic targeted delivery of natural immunomodulatory compounds.


Assuntos
Absorção Fisiológica , Sistemas de Liberação de Medicamentos , Emulsões/química , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Fosfolipídeos/química , Administração Oral , Animais , Disponibilidade Biológica , Composição de Medicamentos , Sistema Linfático/efeitos dos fármacos , Sistema Linfático/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...