Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Small ; : e2400010, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470199

RESUMO

Rechargeable Li-O2 batteries (LOBs) are considered as one of the most promising candidates for new-generation energy storage devices. One of major impediments is the poor cycle stability derived from the sluggish reaction kinetics of unreliable cathode catalysts, hindering the commercial application of LOBs. Therefore, the rational design of efficient and durable catalysts is critical for LOBs. Optimizing surface electron structure via the negative shift of the d-band center offers a reasonable descriptor for enhancing the electrocatalytic activity. In this study, the construction of Ni-incorporating RuO2 porous nanospheres is proposed as the cathode catalyst to demonstrate the hypothesis. Density functional theory calculations reveal that the introduction of Ni atoms can effectively modulate the surface electron structure of RuO2 and the adsorption capacities of oxygen-containing intermediates, accelerating charge transfer between them and optimizing the growth pathway of discharge products. Resultantly, the LOBs exhibit a large discharge specific capacity of 19658 mA h g-1 at 200 mA g-1 and extraordinary cycle life of 791 cycles. This study confers the concept of d-band center modulation for efficient and durable cathode catalysts of LOBs.

2.
Opt Express ; 32(1): 959-968, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175116

RESUMO

Blue-laser-diode-pumped Pr3+-based continuous-wave (CW) green lasers have aroused growing research interest in developing optoelectronic applications and deep ultraviolet laser sources due to their simple and compact structural design. However, the obstacle of thermally induced effects limits the available output power of Pr3+-based green lasers. Herein, combined with the theoretical analysis and experimental feedback, we effectively adjust the heat distribution inside the Pr3+:LiYF4 gain crystal by optimizing the crystal dimension and doping concentration. The excellent mode matching between the pump and green lasers is achieved under the consideration of thermally induced effects, yielding a maximum CW output power of 7.56 W. To the best of our knowledge, this is the largest output power of Pr3+-based CW green lasers so far. Moreover, the obtained green laser demonstrates excellent output stability (RMS = 1.27%) and beam quality (M2 = 1.30 × 1.12) under the lasing operation state with the maximum output power. We hope that this study can provide a feasible paradigm for developing blue-laser-diode-pumped visible lasers, especially for high-power lasers.

3.
Sci Total Environ ; 894: 164862, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348720

RESUMO

Due to limited monitoring stations along rivers, it is difficult to trace the specific locations of high pollution areas along the whole river by traditionally in situ measurement. High-spatiotemporal-resolution Sentinel-2 satellite images make it possible to routinely monitor and trace the spatial distributions of river water quality if reliable retrieval algorithms are available. This study took seven major rivers (Qiantang River (QTR), Cao'e River (CEJ), Yongjiang River (YJ), Jiaojiang River (JJ), Oujiang River (OJ), Feiyun River (FYR), and Aojiang River (AJ)) in Zhejiang Province, China, as examples to illustrate the spatial traceability of river water quality parameters (permanganate index (CODMn), total phosphorus (TP), and total nitrogen (TN)) from Sentinel-2 satellite images. The regional retrieval models established for these parameters (CODMn, TP and TN) provided correlation coefficients (R) of 0.68, 0.82, and 0.7, respectively. Based on these models, time-series CODMn, TP, and TN products were obtained for the seven rivers from 2016 to 2021 from Sentinel-2 satellite images, and the results show that the CODMn, TP and TN were high downstream and low upstream; exceptions the CEJ, which was slightly higher in the middle reach than other reaches, and the TN in YJ, which was higher upstream than downstream. The downstream reaches were the main areas suffering from relatively high values in most seasons. Except for the springtime TN level in CEJ, the high value areas were located along the middle reaches. In summer and autumn, the high TN areas in JJ, OJ, and AJ were located along the middle and lower reaches, and the TN in YJ was highest in the upstream. More importantly, this study revealed that the specific locations of high pollution areas along rivers can be effectively traced using Sentinel-2 satellite images, which would be helpful for precise water quality control of rivers.

4.
Sci Total Environ ; 892: 164418, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257596

RESUMO

Phytoremediation provides substantial advantages, including eco-friendliness, cost-effectiveness, efficiency, and visual appeal. However, the current knowledge of the factors influencing phytoremediation in pesticide-contaminated environments remains limited. It is critical to understand phytoremediation and the factors affecting the variation in removal efficiency. In this study, we compiled 72 previous research articles to quantify plant-induced improvements in removal efficiency and identify factors that influence variations in phytoremediation behavior through meta-analysis. We observed a significant increase in the removal efficiency of phytoremediation compared to the control group which did not involve phytoremediation. Pesticides significantly affect removal efficiency in terms of their modes of action, substance group, and properties. Plants demonstrated higher efficiency in remediating environments contaminated with pesticides possessing lower molecular masses and log Kow values. Plant species emerged as a crucial determinant of variations in removal efficiency. Annual plants exhibited a 1.45-fold higher removal efficiency than perennial plants. The removal efficiencies of different plant types decreased in the following order: agri-food crops > aquatic macrophytes > turfgrasses > medicinal plants > forage crops > woody trees. The Gramineae family, which was the most prevalent, demonstrated a robust and consistent phytoremediation ability. This study offers a more comprehensive triangular relationship between removal efficiency, pesticides, and plants, expanding the traditional linear model. Our findings offer valuable insights into the behavior of phytoremediation in pesticide-contaminated environments and the factors determining its success, ultimately guiding further research toward developing strategies for higher removal efficiency in phytoremediation.


Assuntos
Praguicidas , Poluentes do Solo , Biodegradação Ambiental , Poaceae , Produtos Agrícolas , Árvores
5.
Nanomicro Lett ; 15(1): 115, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121918

RESUMO

Organic-inorganic hybrid perovskite materials have been focusing more attention in the field of self-powered photodetectors due to their superb photoelectric properties. However, a universal growth approach is required and challenging to realize vertically oriented growth and grain boundary fusion of 2D and 3D perovskite grains to promote ordered carrier transport, which determines superior photoresponse and high stability. Herein, a general thermal-pressed (TP) strategy is designed to solve the above issues, achieving uniaxial orientation and single-grain penetration along the film thickness direction. It constructs the efficient channel for ordered carrier transport between two electrodes. Combining of the improved crystal quality and lower trap-state density, the quasi-2D and 3D perovskite-based self-powered photodetector devices (with/without hole transport layer) all exhibit giant and stable photoresponse in a wide spectrum range and specific wavelength laser. For the MAPbI3-based self-powered photodetectors, the largest Rλ value is as high as 0.57 A W-1 at 760 nm, which is larger than most reported results. Meanwhile, under laser illumination (532 nm), the FPEA2MA4Pb5I16-based device exhibits a high responsivity (0.4 A W-1) value, which is one of the best results in 2DRP self-powered photodetectors. In addition, fast response, ultralow detection limit, and markedly improved humidity, optical and heat stabilities are clearly demonstrated for these TP-based devices.

6.
Angew Chem Int Ed Engl ; 62(19): e202302435, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36892282

RESUMO

Perovskite single crystals and polycrystalline films have complementary merits and deficiencies in X-ray detection and imaging. Herein, we report preparation of dense and smooth perovskite microcrystalline films with both merits of single crystals and polycrystalline films through polycrystal-induced growth and hot-pressing treatment (HPT). Utilizing polycrystalline films as seeds, multi-inch-sized microcrystalline films can be in situ grown on diverse substrates with maximum grain size reaching 100 µm, which endows the microcrystalline films with comparable carrier mobility-lifetime (µτ) product as single crystals. As a result, self-powered X-ray detectors with impressive sensitivity of 6.1×104  µC Gyair -1 cm-2 and low detection limit of 1.5 nGyair s-1 are achieved, leading to high-contrast X-ray imaging at an ultra-low dose rate of 67 nGyair s-1 . Combining with the fast response speed (186 µs), this work may contribute to the development of perovskite-based low-dose X-ray imaging.

7.
Opt Express ; 31(4): 6623-6632, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823914

RESUMO

We have investigated the effect of enhanced optical force via the acoustic graphene plasmon (AGP) cavities with the ultra-small mode volumes. The AGP mode can generate stronger field confinement and higher momentum, which could provide giant optical force, and has no polarization preference for the optical source. We have demonstrated that the trapping potential and force applied on polystyrene nanoparticle in the AGP cavities are as high as -13.6 × 102 kBT/mW and 2.5 nN/mW, respectively. The effect of radius of rounded corners and gap distance of AGP cavities on the optical force has been studied. Compared with an ideal nanocube, nanocube with rounded corners is more in line with the actual situation of the device. These results show that the larger radius of nanocube rounded corners, the smaller trapping potential and force provided by AGP cavities. Our results pave a new idea for the investigation of optical field and optical force via acoustic plasmon mode.

8.
Sci Bull (Beijing) ; 67(2): 125-132, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36546005

RESUMO

The 25Mg(p, γ)26Al reaction plays an important role in the study of cosmic 1.809 MeV γ-ray as a signature of ongoing nucleosynthesis in the Galaxy. At astrophysical temperature around 0.1 GK, the 25Mg(p, γ)26Al reaction rates are dominated by the 92 keV resonance capture process. We report a precise measurement of the 92 keV 25Mg(p, γ)26Al resonance in the day-one experiment at Jinping Underground Nuclear Astrophysics experiment (JUNA) facility in the China Jinping Underground Laboratory (CJPL). The resonance strength and ground state feeding factor are determined to be 3.8±0.3 ×10-10 eV and 0.66±0.04, respectively. The results are in agreement with those reported in the previous direct underground measurement within uncertainty, but with significantly reduced uncertainties. Consequently, we recommend new 25Mg(p, γ)26Al reaction rates which are by a factor of 2.4 larger than those adopted in REACLIB database at the temperature around 0.1 GK. The new results indicate higher production rates of 26gAl and the cosmic 1.809 MeV γ-ray. The implication of the new rates for the understanding of other astrophysical situations is also discussed.

9.
Nature ; 610(7933): 656-660, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36289385

RESUMO

Proposed mechanisms for the production of calcium in the first stars (population III stars)-primordial stars that formed out of the matter of the Big Bang-are at odds with observations1. Advanced nuclear burning and supernovae were thought to be the dominant source of the calcium production seen in all stars2. Here we suggest a qualitatively different path to calcium production through breakout from the 'warm' carbon-nitrogen-oxygen (CNO) cycle through a direct experimental measurement of the 19F(p, γ)20Ne breakout reaction down to a very low energy point of 186 kiloelectronvolts, reporting a key resonance at 225 kiloelectronvolts. In the domain of astrophysical interest2, at around 0.1 gigakelvin, this thermonuclear 19F(p, γ)20Ne rate is up to a factor of 7.4 larger than the previous recommended rate3. Our stellar models show a stronger breakout during stellar hydrogen burning than previously thought1,4,5, and may reveal the nature of calcium production in population III stars imprinted on the oldest known ultra-iron-poor star, SMSS0313-67086. Our experimental result was obtained in the China JinPing Underground Laboratory7, which offers an environment with an extremely low cosmic-ray-induced background8. Our rate showcases the effect that faint population III star supernovae can have on the nucleosynthesis observed in the oldest known stars and first galaxies, which are key mission targets of the James Webb Space Telescope9.

10.
Insects ; 13(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135460

RESUMO

Gene rearrangement of the mitochondrial genome of insects, especially the rearrangement of protein-coding genes, has long been a hot topic for entomologists. Although mitochondrial gene rearrangement is common within Annulipalpia, protein-coding gene rearrangement is relatively rare. As the largest family in Annulipalpia, the available mitogenomes from Hydropsychidae Curtis, 1835 are scarce, and thus restrict our interpretation of the mitogenome characteristic. In this study, we obtained 19 novel mitogenomes of Hydropsychidae, of which the mitogenomes of the genus Arctopsyche are published for the first time. Coupled with published hydropsychid mitogenome, we analyzed the nucleotide composition evolutionary rates and gene rearrangements of the mitogenomes among subfamilies. As a result, we found two novel gene rearrangement patterns within Hydropsychidae, including rearrangement of protein-coding genes. Meanwhile, our results consider that the protein-coding gene arrangement of Potamyia can be interpreted by the tandem duplication/random loss (TDRL) model. In addition, the phylogenetic relationships within Hydropsychidae constructed by two strategies (Bayesian inference and maximum likelihood) strongly support the monophyly of Arctopscychinae, Diplectroninae, Hydropsychinae, and Macronematinae. Our study provides new insights into the mechanisms and patterns of mitogenome rearrangements in Hydropsychidae.

11.
ACS Nano ; 16(8): 12425-12436, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35950963

RESUMO

1T-phase MoS2 is a promising electrode material for electrochemical energy storage due to its metallic conductivity, abundant active sites, and high theoretical capacity. However, because of the habitual conversion of metastable 1T to stable 2H phase via restacking, the poor rate capacity and cycling stability at high current densities hamper their applications. Herein, a synergetic effect of electron-injection engineering and atomic-interface engineering is employed for the formation and stabilization of defected 1T-rich MoS2 nanoflowers. The 1T-rich MoS2 and carbon monolayers are alternately intercalated with each other in the nanohybrids. The metallic 1T-phase MoS2 and conductive carbon monolayers are favorable for charge transport. The expanded interlayer spacing ensures fast electrolyte diffusion and the decrease of the ion diffusion barrier. The obtained defected 1T-rich MoS2/m-C nanoflowers exhibit high Na-storage capacity (557 mAh g-1 after 80 cycles at 0.1 A g-1), excellent rate capacity (411 mAh g-1 at 10 A g-1), and long-term cycling performance (364 mAh g-1 after 1000 cycles at 2 A g-1). Furthermore, a Na-ion full cell composed of the 1T-rich MoS2/m-C anode and Na3V2(PO4)3/C cathode maintains excellent cycling stability at 0.5 A g-1 during 400 cycles. Theoretical calculations are also performed to evaluate the phase stability, electronic conductivity, and Na+ diffusion behavior of 1T-rich MoS2/m-C. The energy storage performance demonstrates its excellent application prospects.

12.
Comput Math Methods Med ; 2022: 3830245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799650

RESUMO

Rapid and accurate evaluations of hematoma volume can guide the treatment of traumatic subdural hematoma. We aim to explore the consistency between the measurement results of traumatic subdural hematoma (TSDH) using a deep learn-based image segmentation algorithm. A retrospective study was conducted on 90 CT images of patients diagnosed with TSDH in our hospital from January 2019 to January 2022. All image data were measured by manual segmentation, convolutional neural networks (CNN) algorithm segmentation, and ABC/2 volume formula. With manual segmentation as the "golden standard," a consistency test was carried out with CNN algorithm segmentation and ABC/2 volume formula, respectively. The percentage error of CNN algorithm segmentation is less than ABC/2 volume formula. There is no significant difference between CNN algorithm segmentation and manual segmentation (P > 0.05). The area under curve of the ABC/2 volume formula, manual segmentation, and CNN algorithm segmentation is 0.811 (95% CI: 0.717~0.905), 0.840 (95% CI: 0.753~0.928), and 0.832 (95% CI: 0.742~0.922), respectively. From our results, the algorithm based on CNN has a good efficiency in segmentation and accurate calculation of TSDH hematoma volume.


Assuntos
Aprendizado Profundo , Hematoma/diagnóstico por imagem , Hematoma Subdural , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Estudos Retrospectivos
13.
ACS Appl Mater Interfaces ; 14(1): 1526-1536, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968040

RESUMO

It is well-known that two-dimensional Ruddlesden-Popper (2DRP) perovskite has higher stability than three-dimensional counterparts. However, fundamental issues still exist in the vertical orientation and phase composition as well as phase distribution. Here, obvious control of the film quality of 2DRP PEA2MA4Pb5I16 (n = 5) perovskite is demonstrated via a thermal-pressed (TP) effect. The crystallinity, morphology, phase composition, and optoelectronic features unequivocally illustrate that the TP effect achieves a larger gain size, a smoother surface, an effectively vertical orientation, a relatively pure phase with a large n value, a gradient distribution of quantum wells, and enhanced interlayer interaction. These film and interface features lead to markedly enhanced charge transport/extraction and lower trap density. Accordingly, the TP-based perovskite film device delivers a power conversion efficiency of 15.14%, far higher than that of the control film device (11.10%) because of significant improvements in open-circuit voltage and short-circuit current. More importantly, it also presents excellent hydrophobicity, illumination stability, and environmental stability. In addition, the 2D perovskite self-powered photodetector also exhibits high responsivity (0.25 A W-1) and specific detectivity (1.4 × 1012 Jones) at zero bias.

14.
ACS Appl Mater Interfaces ; 13(34): 41012-41020, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410119

RESUMO

Photodynamic therapy (PDT) is a potential approach to resolve antibiotic resistance, and phenylene/thiophene-ethynylene oligomers have been widely studied as effective antibacterial reagents. Oligomers with thiophene moieties usually exhibit good antibacterial activity under light irradiation and dark conditions. In the previous study, we verified that neutral oligo-p-phenylene-ethynylenes (OPEs) exhibit better antibacterial activity than the corresponding cationic ones; however, whether this regular pattern also operates in other kinds of oligomers such as oligo-thiophene-ethynylene (OTE) is unknown. Also, the antibacterial activity comparison of OTEs bearing cyclic and acyclic amino groups will offer useful information to further understand the role of amino groups in the antibacterial process and guide the antibacterial reagent design as amino groups affect the antibacterial activity a lot. We synthesized four OTEs bearing neutral or cationic, cyclic, or acyclic amino groups and studied their antibacterial activity in detail. The experimental results indicated that the OTEs exhibited better antibacterial activity than the OPEs, the neutral OTEs exhibited better antibacterial activity in most cases, and OTEs bearing cyclic amino groups exhibited better antibacterial activity than those bearing acyclic ones in most cases. This study provides useful guidelines for further antibacterial reagent design and investigations.


Assuntos
Alcinos/farmacologia , Antibacterianos/farmacologia , Tiofenos/farmacologia , Alcinos/química , Alcinos/efeitos da radiação , Alcinos/toxicidade , Antibacterianos/química , Antibacterianos/efeitos da radiação , Antibacterianos/toxicidade , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luz , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Tiofenos/química , Tiofenos/efeitos da radiação , Tiofenos/toxicidade
15.
Am J Transl Res ; 13(4): 3826-3832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017572

RESUMO

OBJECTIVES: This study investigated and analyzed the effects of glucocorticoid infiltration on chronic rhino-sinusitis with nasal polyps (CRSwNP) after endoscopic sinus surgery (ESS) and its curative efficacy on nasal ventilation function and mucociliary clearance (MCC). METHODS: 126 CRSwNP patients admitted to the hospital from March 2018 to May 2020 were enrolled and randomly divided into observation group (n=65) and control group (n=61) based on random number table. The control group received ESS, and the observation group was given glucocorticoids treatment after ESS. The changes of nasal ventilation function, MCC and quality of life between the two groups of patients before and after treatment were compared. RESULTS: The overall effective rate of clinical therapy was critically higher in observation group than in control group (P<0.05). In addition, NMCA and NCV in observation group were critically higher than those in control group (P<0.05), and nasal airway resistance (NAR) in observation group was notably lower than that in control group (P<0.05). In addition, the Saccharin removal time in observation group after treatment was remarkably lower than that in control group (P<0.05), while the speed and rate of MCC were critically higher than those in control group (P<0.05). Finally, the scores of each dimension of WHOQOL-100 scale in two groups of subjects after treatment were critically higher than those before treatment (P<0.05), and the scores in observation group were notably higher than those in control group (P<0.05). CONCLUSION: The treatment of glucocorticoid infiltration on CRSwNP after ESS can effectively improve the curative effect. It improves the patient's function of nasal ventilation and MCC, thus beneficial to promoting the sufferers' living quality and is worthy of clinical promotion.

16.
Brief Bioinform ; 22(1): 485-496, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31927572

RESUMO

Emerging evidence shows that microRNAs (miRNAs) play a critical role in diverse fundamental and important biological processes associated with human diseases. Inferring potential disease related miRNAs and employing them as the biomarkers or drug targets could contribute to the prevention, diagnosis and treatment of complex human diseases. In view of that traditional biological experiments cost much time and resources, computational models would serve as complementary means to uncover potential miRNA-disease associations. In this study, we proposed a new computational model named Neighborhood Constraint Matrix Completion for MiRNA-Disease Association prediction (NCMCMDA) to predict potential miRNA-disease associations. The main task of NCMCMDA was to recover the missing miRNA-disease associations based on the known miRNA-disease associations and integrated disease (miRNA) similarity. In this model, we innovatively integrated neighborhood constraint with matrix completion, which provided a novel idea of utilizing similarity information to assist the prediction. After the recovery task was transformed into an optimization problem, we solved it with a fast iterative shrinkage-thresholding algorithm. As a result, the AUCs of NCMCMDA in global and local leave-one-out cross validation were 0.9086 and 0.8453, respectively. In 5-fold cross validation, NCMCMDA achieved an average AUC of 0.8942 and standard deviation of 0.0015, which demonstrated NCMCMDA's superior performance than many previous computational methods. Furthermore, NCMCMDA was applied to three different types of case studies to further evaluate its prediction reliability and accuracy. As a result, 84% (colon neoplasms), 98% (esophageal neoplasms) and 98% (breast neoplasms) of the top 50 predicted miRNAs were verified by recent literature.


Assuntos
Predisposição Genética para Doença , MicroRNAs/genética , Software , Genoma Humano , Genômica/métodos , Humanos , MicroRNAs/metabolismo
17.
ACS Appl Bio Mater ; 4(4): 3561-3570, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014441

RESUMO

More strategies are required to develop better photosensitizers for photodynamic therapy (PDT). As oligo(phenylene-ethynylene) electrolytes (OPE), oligo(thiophene)s with primary amine as pendant groups (P-OT), and oligo(thiophene ethynylene) (OTE) exhibit excellent light-induced biocidal activity, we desire to converge the molecular design principles of these three kinds of antibacterial agents to combine their advantages to obtain high efficiency and economic biocides. Thus, four oligo(thiophene)s (OTs) were designed and synthesized in this study. The light-induced and dark antibacterial efficacy of the four OTs against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) were both evaluated. Notably, all the OTs present high biocidal efficacy in the broad spectrum at low (micromolar) concentrations after white-light irradiation. In particular, the low cell cytotoxicity of OTs exhibits their good biocompatibility. These results illustrate that the OTs could work as promising PDT biocides. Interestingly, OT-3 shows a strong and specific dark killing activity against E. coli. The higher biocidal efficacy of T-OTs compared with that of Q-OTs confirms the tertiary amine is a better pendant group for π-conjugated antibacterial agents against E. coli. Mechanistic investigation proves ROS is the necessary element for antibiosis under white light. The interacting efficacy of the OT to the cell membrane, involving synergistic effects between hydrophilic-hydrophobic interactions and electrostatic attractions, is also critical in the killing process. The membrane intercalating activity plays a more essential role, as indicated by the antibacterial activity of OTs. The results provide a unique insight into the relationship between molecular structure and antibacterial activities of this class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Luz , Fotoquimioterapia , Tiofenos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/química , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Tiofenos/química
18.
Pharmazie ; 75(10): 500-504, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33305725

RESUMO

The etiology of osteoarthritis (OA) has been discussed widely, but the molecular mechanisms beneath OA aggravation have not yet been investigated in detail. This study focused on the role of lncRNA RMRP (RMRP) on OA progression. We found that the expression of RMRP was significantly increased in cartilage tissues of patients with OA. CCK-8 and colony formation assays showed that RMRP knockdown promoted proliferation of chondrocytes treated with IL-1ß. Flow cytometry and caspase-3 activity analysis indicated that RMRP silence inhibited apoptosis of chondrocytes treated with IL-1ß. Moreover, luciferase reporter, RNA pull-down and RIP assays showed that RMRP competing with miR-206. Additionally, CDK9 acted as a direct target of miR-206. Moreover, rescue assays indicated that miR-206 inhibitor or pcDNA-CDK9 reversed the effects of RMRP suppression on the proliferation and apoptosis of chondrocytes. Taken together, our results indicated that RMRP knockdown could promote proliferation and inhibit apoptosis in OA chondrocytes via the miR-206/CDK9 axis.


Assuntos
Condrócitos/patologia , MicroRNAs/genética , Osteoartrite/patologia , RNA Longo não Codificante/genética , Apoptose/genética , Cartilagem/patologia , Linhagem Celular , Proliferação de Células/genética , Quinase 9 Dependente de Ciclina/genética , Progressão da Doença , Técnicas de Silenciamento de Genes , Humanos , Interleucina-1beta/administração & dosagem , Osteoartrite/genética
19.
Medicine (Baltimore) ; 99(33): e21667, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32872031

RESUMO

BACKGROUND: This study will explore the association between tumor necrosis factor α (TNF-α) and uterine fibroids (UFs). METHODS: We will retrieve electronic databases in Cochrane Library, PUBMED, EMBASE, Web of Science, WANGFANG, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure from inception to the present. All potential case-controlled studies investigating the association between TNF-α and UFs will be included in this study. Two researchers will independently select literature, appraise study quality, and extract outcome data. We will utilize a fixed-effects model or a random-effects model to synthesize outcome data. All data analysis will be performed by RevMan 5.3 software. RESULTS: The present study will supply high-quality synthesis and/or descriptive analysis of the recent evidence to explore the association between TNF-α and UFs. CONCLUSION: This study will exert evidence to determine whether or not TNF-α is associated with UFs. STUDY REGISTRATION NUMBER: INPLASY202070010.


Assuntos
Leiomioma/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias Uterinas/metabolismo , Biomarcadores Tumorais , Estudos de Casos e Controles , Feminino , Humanos , Revisões Sistemáticas como Assunto
20.
ACS Appl Mater Interfaces ; 12(34): 38314-38324, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805909

RESUMO

Perovskite single-crystal (SC) or quasi-single-crystal (QSC) films are promising candidates for excellent performance of photoelectric devices. However, it is still a great challenge to fabricate large-area continuous SC or QSC films with proper thickness. Herein, we propose a pressure-assisted high-temperature solvent-engineer (PTS) strategy to grow large-area continuous MAPbI3 QSC films with uniformly thin thickness and orientation. Dramatic grain growth (∼100 µm in the lateral dimension) and adequate boundary fusion are realized in them, vastly eliminating the grain boundaries. Thus, remarkable diminution of the trap density (ntrap: 7.43 × 1011 cm-3) determines a long carrier lifetime (τ2: 1.7 µs) and superior photoelectric performance of MAPbI3-based lateral photodetectors; for instance, an ultrahigh on/off ratio (>2.4 × 106, 2 V), great stability, fast response (283/306 µs), and high detectivity (1.41 × 1013) are achieved. The combination properties and performance of the QSC films surpass most of the reported MAPbI3. This effective approach in growing perovskite QSC films points out a novel way for perovskite-based optoelectronic devices with superior performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...