Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34578653

RESUMO

The direct fabrication of micron-thickness patterned electronics consisting of patterned PVA films and CNT micropatterns still faces considerable challenges. Here, we demonstrated the integrated fabrication of PVA films of micron-thickness and CNT-based patterns by utilising micro-pen writing and drop-on-demand printing in sequence. Patterned PVA films of 1-5 µm in thickness were written first using proper micro-pen writing parameters, including the writing gap, the substrate moving velocity, and the working pressure. Then, CNT droplets were printed on PVA films that were cured at 55-65 °C for 3-15 min, resulting in neat CNT patterns. In addition, an inertia-pseudopartial wetting spreading model was established to release the dynamics of the droplet spreading process over thin viscoelastic films. Uniform and dense CNT lines with a porosity of 2.2% were printed on PVA substrates that were preprocessed at 55 °C for 9 min using a staggered overwriting method with the proper number of layers. Finally, we demonstrated the feasibility of this hybrid printing method by printing a patterned PVA-CNT film and a micro-ribbon. This study provides a valid method for directly fabricating micron-thickness PVA-CNT electronics. The proposed method can also provide guidance on the direct writing of other high-molecular polymer materials and printing inks of other nanosuspensions.

2.
J Phys Condens Matter ; 30(33): 335001, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30004031

RESUMO

Uniform graphene films and micro-patterns are the cornerstones of graphene-based printed electronics. However, disk-like reduced graphene oxide (RGO) sheets trend to concentrate at the edge of the drop because of the famous coffee-ring effect, resulting in non-uniform patterns. To understand the physics of coffee-ring formation for RGO droplets on hydrophilic substrates, we propose a mechanical model to elucidate the influence and its mechanism of substrate wettability on the solute migration behavior and solute distribution morphology of RGO droplets. Stronger coffee-ring morphology and a slower velocity transition on the PMMA can be observed as compared to that on the glass slides. An explanation based on the mechanical model is provided as the large contact angle on the PMMA leads to a small hindrance force and finally results in more significant coffee-ring morphology. Remarkably, we have revealed one underlying mechanism by which the hydrophilic substrate with better wettability will form more uniform patterns. This study can provide fundamental insights into the relationship between substrate wettability and RGO sheets distribution morphology. It might contribute to morphology regulation of RGO droplets in the DOD printing of graphene films and micro-patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...