Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(48): 10243-10252, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37983021

RESUMO

The interaction of fuel with NOx chemistry is important for the construction of the reaction mechanism and engine application. In this work, the reaction pathways of nC5H12 + NO2 were studied by high-level electronic structure calculations (DLPNO-CCSD(T)-F12/cc-pVTZ-F12//B2PLYPD3/cc-pVTZ). The rate constants were calculated by using the multistructural canonical transition-state theory with the Eckart tunneling method (TST/MS-T/ET). The studied condition is in a wide temperature range of 298-2400 K. The influence of MS-T anharmonicity and tunneling effect will be clarified for these site-specific H-abstraction pathways. The result reflects the large deviation introduced by the treatment of MS-T anharmonicity, especially at a high temperature. For the same type of reactions, the rate constants of H-abstraction both occurring at the secondary carbon are not almost identical. The branching ratios show that abstraction from the secondary site forming cis-HONO (R2c) contributes 36-78% to nC5H12 consumption in the temperature range of 298-2400 K. The current results show that the multistructural torsional anharmonicity has a crucial influence on the accurate estimation of branching ratios.

2.
J Am Chem Soc ; 144(37): 16984-16995, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069709

RESUMO

Ketohydroperoxides (KHPs) are oxygenates with carbonyl and hydroperoxy functional groups, and they are generated under combustion and atmospheric conditions. Their fate is crucial for secondary organic aerosol formation in the troposphere and for the ignition processes of biofuels in advanced combustion engines. We investigated the thermodynamics and kinetics of nine hydrogen abstraction reactions from four ether KHPs by OH. We find that the rate constants are strongly affected by entropic effects whose estimation requires a consideration of higher-energy conformers of the transition state. A density functional was selected for these reactions by comparison to coupled cluster calculations, and it was used for calculations by multistructural canonical transition-state theory with multidimensional tunneling over the temperature range of 200-2000 K. We find that the effect of multistructural torsional anharmonicity is very large and quite different for the various ether KHP reactions. A leading cause of the structural dependence is the dominance of entropic factors due to the lack of hydrogen bonding in some of the higher-energy conformers of the transition states. Four of the reactions involve abstraction from the α-carbon (the carbon vicinal to the hydroperoxide group); they exhibit nonmonotonic temperature dependence with complex fuel-specific dependence. The rate constants for abstraction from a non-α-carbon of a given KHP can be faster than the ones for abstraction from an α-carbon; in two cases, this is due to entropy, and in one case, the non-α-carbon abstraction has a lower energy barrier. Tunneling and recrossing effects are also found to be important.


Assuntos
Biocombustíveis , Peróxido de Hidrogênio , Carbono/química , Éteres , Hidrogênio/química , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...