Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 42(10): 4698-4707, 2021 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-34581112

RESUMO

Land use is an important factor affecting non-point nutrient loading. Here, the Wuxi River basin was selected to analyze the influence of sub-basin land use on nutrient concentrations using remotely sensed land use data and monthly river water quality variables from October 2019 to September 2020. The results showed that the water quality of the river was closely related to land-use type. Specifically, dryland farmland, villages, and building land have a strong promoting influence on nitrogen, phosphorus, organic carbon, and phytoplankton chlorophyll a. The proportion of orchard land was also positively correlated with river nutrient concentrations. A negative correlation was observed between the proportion of forest land and nutrient concentrations. Moreover, the proportion of the water area in rivers and reservoirs was negatively correlated with the total dissolved nitrogen and nitrate concentrations in the river, and the proportion of the water area in natural pits and fishponds was negatively correlated with river nitrate and ammonia concentrations. Furthermore, the proportion of river and fishpond areas was positively correlated with the concentration of dissolved total phosphorus, dissolved organic carbon, and the permanganate index, while the proportion of the natural pond area was positively correlated with the concentration of particulate phosphorus and phytoplankton chlorophyll a. The influence of land-use types on water quality was also affected by distance from the river. This research indicates that the appropriate utilization of land and wetlands is key to controlling non-point nutrient loading in the river network, including Lake Taihu. Specifically, the self-purification capacity of wetland waters should be incorporated into nutrient control schemes, and special attention should be paid to the reduction of non-point source pollution in the drylands along the downstream riverbanks and urbanized areas.


Assuntos
Lagos , Poluentes Químicos da Água , China , Clorofila A , Monitoramento Ambiental , Nitrogênio/análise , Nutrientes , Fósforo/análise , Poluentes Químicos da Água/análise
2.
Huan Jing Ke Xue ; 41(11): 4970-4980, 2020 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124240

RESUMO

To understand the quantitative effect of heavy rain on nitrogen and phosphorus pollution in river-net plain, daily observations of nutrient concentrations in two rivers, flowing into Lake Taihu, were conducted from 1st September, 2017 to 31st August, 2019. The daily rainfall was recorded by auto-recording meteorological stations located on the two rivers and the Taihu Laboratory for Lake Ecosystem Research. Intensive sampling in different sections of the two rivers during Super Typhoon Lekima was also conducted in August 2019. Using these datasets, the influence of heavy rainfall on various forms of nitrogen and phosphorus concentrations in the rivers, and its environmental effects, were analyzed. The results showed that 16 heavy rainfall events (19 d) were observed in two years, 50% of which occurred in the summer season. In addition, heavy rainfall accounted for as much as 41.33% of the total rainfall over the entire year. After the period of heavy rainfall, the concentrations of various forms of nitrogen and phosphorus increased, and the particulate P generally exhibited the fastest response, usually peaking on the day of heavy rainfall. In contrast, the peaks of N were delayed for 2-5 days with the occurrence of heavy rain. In general, the duration of the increase in the concentration of nutrients in the study river caused by heavy rainfall was short (usually 1-2 days), and sometimes was lower than the concentration before the rains. The Dapu River exhibited a slower response to heavy rains than the Yincun River because it has a larger and longer catchment area than the Dapu River. In addition, the effect of heavy rain on N and P concentrations was also strongly influenced by the land-use situation around the river basin. The increase of nitrogen in the reach, affected by agricultural non-point sources, was dominated by granular nitrogen, and the increase of nitrogen in the reach affected by urban non-point sources was dominated by dissolved nitrogen. The increase of phosphorus was dominated by granular phosphorus in the entire process. The conclusions of this study are as follows:In the plain river network area, the fluctuations of nitrogen and phosphorus concentrations in the river water body caused by heavy rainfall are small, and the response of various forms of nitrogen and phosphorus are significantly affected by the local environmental background. Therefore, the water quality generally exhibited limited variation. Due to the large proportion of water entering the lake during heavy rainfall events, a high level of the nutrient loading was also observed, and the occurrence of heavy rainfall was occasional. The short-term effect of heavy rainfall on the nitrogen and phosphorus loading entering the lake in the river channel in the plain river network area is therefore, also significant, and requires further investigation.


Assuntos
Rios , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...