Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(9): 14766-14775, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34432437

RESUMO

Aqueous zinc batteries (AZBs) are considered promising candidates for large-scale energy storage systems because of their low cost and high safety. However, currently developed AZB cathodes always suffer from the intense charge repulsion of multivalent-ion and complex multiphase electrochemistry, resulting in an insufficient cycling life and impracticable high-sloping discharge profile. Herein, we found that the synthesized ultrathin Bi2O2Se nanosheets can effectively activate stable protons storage in AZBs rather than large zinc ions. This proton-dominated cathode provides an ultraflat discharge plateau (72% capacity proportion) and exhibits long-term cyclability as 90.64% capacity retention after 2300 cycles at 1 A g-1. Further in situ synchrotron X-ray diffraction, ex situ X-ray photoelectronic spectroscopy, and density functional theory confirm the energy storage mechanism regarding the highly reversible proton insertion/extraction process. Benefiting from the proton-dominated fast dynamics, reliable energy supply (>81.5% discharge plateau capacity proportion) is demonstrated at a high rate of up to 10 A g-1 and in the frozen electrolyte below -15 °C. This work provides a potential design of high-performance electrode materials for AZBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...