Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171789, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508275

RESUMO

One significant "sink" for microplastic (MP) pollution is the sediments. There's a considerable lack of reliable data regarding the historical status of MPs contamination in sediments within marine ranching. In this research, the study area encompassed Haizhou bay marine ranching and adjacent seas. The primary objective was to explore the potential relationships between the accumulation of MPs and both the sample depth and sediment characteristics within the cores. The results unveiled significant contamination of MPs within the sediment cores. The average MPs concentration of sediment was 1.01 ± 1.28 n/g. Fibrous polymers and particles smaller than 1000 µm were frequently found in the sediment. The abundance of MPs exhibited a tendency to decrease with an increase in sediment depth. Artificial reefs and currents affected on MPs distribution in sediment cores. The accumulation of MPs showed a significant correlation (P < 0.05) with the sediment content of different particle sizes, suggesting that the composition of sediment can serve as an indicator of the abundance of MPs. The risk of MP pollution in the sediments of the study area was assessed by establishing a risk assessment model using concentration data of MPs and polymer types. Due to the higher hazard score of polymers (PA and PET) in MPs, the Polymer hazard index (PHI) was elevated to grade II. However, it had a Pollution load index (PLIzone) value of 1.95 (level I). This suggested that contamination was minimal, yet the ecological risk remained relatively high. The ecological risk assessment of MPs served as the foundation for gaining a detailed understanding of the distribution characteristics of MPs. It also furnished essential data support for conducting a comprehensive assessment, developing feasible management strategies, and establishing water quality standards related to plastic waste.

2.
Mar Environ Res ; 195: 106353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295611

RESUMO

Plastic products are widely distributed worldwide and continue to have a negative impact on the environment and organisms. Intertidal regions, which interface between upland and marine ecosystems, are regions of high ecological importance and serve as repositories for a variety of plastic wastes. However, ecological risk assessments of microplastics (MPs) in these transitional environments are still scarce. In this study, the morphological characteristics and spatial distribution of MPs in the intertidal surface sediments of Haizhou Bay were analyzed, and an ecological risk assessment framework for MPs was developed. Overall, the average abundance of MPs in the sediments was 2.31 ± 1.35 pieces/g dw. The size of the MPs was mainly less than 1 mm, and the main shape, color and polymer type of the MPs were mainly fibrous (58%), blue (30%), and PVC (22%), respectively. Cluster analyses showed that the sites could be well distinguished by size and polymer type but not by MP shape and color. According to the hazard scores, most of the sites in this area belonged to a risk level of IV, while the pollution loading index (PLI) showed that most of the sites belonged to a risk level of II. The ecological toxicity risk from the species-sensitive distribution (SSD) model showed that one-third of the sites had ecological MPs toxicity risks to marine organisms. We believe that normalized and standardized assessment methods should be implemented to monitor and manage the risk of MPs in the intertidal sediments. Particularly, the multiple dimensions, standard abundance of MPs, as well as MPs ingestion in the intertidal organisms, should be fully considered in the next step.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Microplásticos/análise , Plásticos , Polímeros , Medição de Risco , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 900: 166236, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37572897

RESUMO

Recently, scholars have been increasing concerned about microplastics (MPs). Unfortunately, information is lacking on the spatial distribution patterns of MPs in coastal seas; therefore, our understanding of the extent of offshore MP contamination remains incomplete. MP distribution in the seawater and surface sediments of an aquaculture area (AA), artificial reef area (AR), and comprehensive effect area (CEA) in Haizhou Bay were investigated in this study. The results showed that the mean abundances of MPs in the surface, middle and bottom seawater were 6.98 ± 3.01 n/m3, 9.12 ± 3.07 n/m3 and 10.20 ± 2.41 n/m3, respectively, and that the abundance in the sediment was 3.09 ± 1.16 n/g. The MP abundance in the bottom seawater was significantly higher than that in the surface seawater (P < 0.05). The correlation among MPs at different depths was not significant, but MPs in most habitats showed a significant correlation. We discovered a significant correlation between the abundance of MPs in the CEA seawater and AR sediments, but not between that in the CEA sediments and AR sediments. MPs can be transported from surface seawater to deeper layers by natural deposition processes. The horizontal transport of MPs due to the coastal gulf current and regular semidiurnal tides lead to the correlations observed in of MP abundance among the AA, CEA, and AR. Migration of MPs from the CEA to the AR was primarily caused by the southern eddies in Haizhou Bay, while migration of MPs from the sediment to the seawater could be due to upwelling in the AR. This was also the main reason there was a lack of a correlation between the sediment from the AR and the seawater from the CEA. This work provides a theoretical and empirical foundation for MP transport and source tracking.

4.
Sci Total Environ ; 901: 165570, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482348

RESUMO

Microplastics (MPs) are recognized as global pollutants. The occurrence and distribution of MP transfer at the species level have been reported, but few studies have focused on the individual level. In this study, two typical migratory demersal species (Collichthys lucidus and Larimichthys polyactis, family Sciaenidae) from the coastal waters of the Lvsi fishing ground were selected to analyze the distribution characteristics of MPs in their gastrointestinal tracts and to explore the potential biomagnification of MPs in different body lengths. The results showed that the main MP color found in both species was blue (>80 %), while the main MP shape was fiber (>90 %), and the main MP polymer type was polyethylene terephthalate (PET) (>70 %). Overall, the abundance of MPs in C. lucidus (3.24 ± 1.57 pieces/fish) was higher than that in L. polyactis (2.24 ± 0.56 pieces/fish). The abundance of MPs in C. lucidus with a body length >90 mm was significantly higher than that with a body length <90 mm, and no significant difference was found in L. polyactis. We believe that the shift in feeding habits during the life history of the two species is an important factor that affects the variation in MPs between body lengths. Additionally, there was a significant positive correlation between MPs and the length (weight) of C. lucidus but no correlation in L. polyactis. There was no significant correlation between trophic level and MPs in either species. This indicated that MP bioaccumulation only occurred in C. lucidus, and MP biomagnification did not occur in either species. We suggest that further research be conducted on MPs ingested by more species at an individual level regarding the biomagnification/bioaccumulation phenomenon. This will help further elucidate the characteristics of MP transfer in the food webs of ecosystems and provide theoretical support for understanding MP pollution in coastal waters.

5.
Sci Total Environ ; 854: 158575, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075424

RESUMO

Global microplastic (MP) pollution is a serious environmental problem that has been found in various ecosystems, especially marine ecosystems. In this study, the water (surface, middle and bottom water), sediment and fish (pelagic, demersal and benthic fish) in the artificial reef area and adjacent waters in Haizhou Bay were collected, and the mechanism of MP transmission among the three media was analyzed. The results showed that >96 % of the plastics in the region were MPs. The shape of MPs was mainly fibrous (water (73.3 %), sediment (56 %), fish (95.3 %)), color was mainly blue (water (49.3 %), sediment (47 %), fish (72.3 %)), and the material was mainly PET (water (39.6 %), sediment (33 %), fish (86.6 %)). We found that, except for the natural deposition of MPs, MPs could be ingested by pelagic fish and transmitted through vertical movement in the water, while there was an interaction between MPs in benthic fishes and the middle-bottom waters. In addition, as relevant variables, body length and body weight were more likely to explain the number of MPs ingested by fishes than were δ13C and δ15N. Therefore, based on the linear relationship between δ15N and body length, we concluded that there was a weak trophic magnification effect of MPs ingested by fish in this region. This study provides unique information for further exploring the factors influencing the spatial distribution of MPs and the transmission mechanism of MPs in fish.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos , Água , Ecossistema , Baías , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...