Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139357, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392801

RESUMO

The 3-D matrix scale ion-exchange mechanism was explored for high-capacity cadmium (Cd) removal using bone chars (BC) chunks (1-2 mm) made at 500 °C (500BC) and 700 °C (700BC) in aqueous solutions. The Cd incorporation into the carbonated hydroxyapatite (CHAp) mineral of BC was examined using a set of synchrotron-based techniques. The Cd removal from solution and incorporation into mineral lattice were higher in 500BC than 700BC, and the diffusion depth was modulated by the initial Cd concentration and charring temperature. A higher carbonate level of BC, more pre-leached Ca sites, and external phosphorus input enhanced Cd removal. The 500BC showed a higher CO32-/PO43- ratio and specific surface area (SSA) than the 700BC, providing more vacant sites by dissolution of Ca2+. In situ observations revealed the refilling of sub-micron pore space in the mineral matrix because of Cd incorporation.The X-ray nanodiffraction (XND) analyses revealed that Cd was mainly removed from water by incorporation into the mineral lattice of 500BC via ion exchange, rather than surface sorption and precipitation, and the mineral phase was transformed from hydroxyapatite (HAp) to cadmium hydroxyapatite (Cd-HAp). The Rietveld's refinement of X-ray diffraction (XRD) data resolved up to 91% of the crystal displacement of Ca2+ by Cd2+. The specific phase and stoichiometry of the new Cd-HAp mineral was dependent on the level of ion exchange. This mechanistic study confirmed that 3-D ion exchange was the most important path for heavy metal removal from aqueous solution and immobilization in BC mineral matrix, and put forward a novel and sustainable remediation strategy for Cd removal in wastewater and soil clean-up.


Assuntos
Cádmio , Durapatita , Durapatita/química , Cádmio/química , Fósforo , Adsorção
2.
J Environ Manage ; 305: 114344, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953223

RESUMO

Soil fertility and phosphorus management by bone apatite amendment are receiving increasing attention, yet further research is needed to integrate the physicochemical and mineralogical transformation of bone apatite and their impact on the supply and storage of phosphorus in soil. This study has examined bone transformation in the field over a span of 10-years using a set of synchrotron-based microscopic and spectroscopic techniques. Transmission X-ray microscopy (TXM) observations reveal the in-situ deterioration of bone osteocyte-canaliculi system and sub-micron microbial tunneling within a year. Extensive organic decomposition, secondary mineral formation and re-mineralization of apatite are evident from the 3rd year. The relative ratio of (v1 + v3) PO43- to v3 CO32- and to amide I increase, and the v3c PO43- peak exhibits a blue-shift in less than 3 years. The carbonate substitution of bone hydroxyapatite (HAp) to AB-type CHAp, and phosphate crystallographic rearrangement become apparent after 10 years' aging. The overall CO32- peak absorbance increases over time, contributing to a higher acid susceptibility in the aged bone. The X-ray Photoelectron Spectroscopy (XPS) binding energies for Ca (2p), P (2p) and O (1s) exhibit a red-shift after 1 year because of organo-mineral interplay and a blue-shift starting from the 3rd year as a result of the de-coupling of mineral and organic components. Nutrient supply to soil occurs within months via organo-mineral decoupling and demineralization. More phosphorus has been released from the bones and enriched in the associated and adjacent soils over time. Lab incubation studies reveal prominent secondary mineral formation via re-precipitation at a pH similar to that in soil, which are highly amorphous and carbonate substituted and prone to further dissolution in an acidic environment. Our high-resolution observations reveal a stage-dependent microbial decomposition, phosphorus dissolution and immobilization via secondary mineral formation over time. The active cycling of phosphorus within the bone and its interplay with adjacent soil account for a sustainable supply and storage of phosphorus nutrients.


Assuntos
Apatitas , Fósforo , Osso e Ossos , Durapatita , Solo
3.
Comput Struct Biotechnol J ; 19: 3692-3707, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34285772

RESUMO

Phosphoinositides (PIs) are a family of eight lipids consisting of phosphatidylinositol (PtdIns) and its seven phosphorylated forms. PIs have important regulatory functions in the cell including lipid signaling, protein transport, and membrane trafficking. Yeast has been recognized as a eukaryotic model system to study lipid-protein interactions. Hundreds of yeast PI-binding proteins have been identified, but this research knowledge remains scattered. Besides, the complete PI-binding spectrum and potential PI-binding domains have not been interlinked. No comprehensive databases are available to support the lipid-protein interaction research on phosphoinositides. Here we constructed the first knowledgebase of Yeast Phosphoinositide-Binding Proteins (YPIBP), a repository consisting of 679 PI-binding proteins collected from high-throughput proteome-array and lipid-array studies, QuickGO, and a rigorous literature mining. The YPIBP also contains protein domain information in categories of lipid-binding domains, lipid-related domains and other domains. The YPIBP provides search and browse modes along with two enrichment analyses (PI-binding enrichment analysis and domain enrichment analysis). An interactive visualization is given to summarize the PI-domain-protein interactome. Finally, three case studies were given to demonstrate the utility of YPIBP. The YPIBP knowledgebase consolidates the present knowledge and provides new insights of the PI-binding proteins by bringing comprehensive and in-depth interaction network of the PI-binding proteins. YPIBP is available at http://cosbi7.ee.ncku.edu.tw/YPIBP/.

4.
Anal Chem ; 93(2): 868-877, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33302626

RESUMO

We used yeast proteome microarrays (∼5800 purified proteins) to conduct a high-throughput and systematic screening of PI5P-interacting proteins with PI5P-tagged fluorescent liposomal nanovesicles. Lissamine rhodamine B-dipalmitoyl phosphatidylethanol was incorporated into the liposome bilayer to provide the nanovesicles with fluorescence without any encapsulants, which not only made the liposome fabrication much easier without the need for purification but also improved the chip-probing quality. A special chip assay was washed very gently without the traditional spin-dry step. Forty-five PI5P-interacting proteins were identified in triplicate with this special chip assay. Subsequently, we used flow cytometry to validate these interactions, and a total of 41 PI5P-interacting proteins were confirmed. Enrichment analysis revealed that these proteins have significant functions associated with ribosome biogenesis, rRNA processing, ribosome binding, GTP binding, and hydrolase activity. Their component enrichment is located in the nucleolus. The InterPro domain analysis indicated that PI5P-interacting proteins are enriched in the P-loop containing nucleoside triphosphate hydrolases domain (P-loop). Additionally, using the MEME program, we identified a consensus motif (IVGPAGTGKSTLF) that contains the Walker A sequence, a well-known nucleotide-binding motif. Furthermore, using a quartz crystal microbalance, both the consensus motif and Walker A motif showed strong affinities to PI5P-containing liposomes but not to PI5P-deprived liposomes or PI-containing liposomes. Additionally, the glycine (G6) and lysine (K7) residues of the Walker A motif (-GPAGTG6K7S-) were found to be critical to the PI5P-binding ability. This study not only identified an additional set of PI5P-interacting proteins but also revealed the strong PI5P-binding affinity (Kd = 1.81 × 10-7 M) of the Walker A motif beyond the motif's nucleotide-binding characteristic.


Assuntos
Fosfatos de Fosfatidilinositol/química , Análise Serial de Proteínas , Proteoma/análise , Saccharomyces cerevisiae/isolamento & purificação , Lipossomos/química , Técnicas de Microbalança de Cristal de Quartzo
5.
Sci Total Environ ; 766: 142601, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33071118

RESUMO

The applicability of bone char as a long-term phosphorus nutrient source was assessed by integrating their mineral transformation and physicochemical properties with their dissolution behavior. We have explored synchrotron-based spectroscopic and imaging techniques (FTIR, XRD, and TXM) to investigate the physicochemical changes of bone and bone char along a charring temperature gradient (300-1200 °C) and used a lab incubation experiment to study their dissolution behaviors in solutions of different pH (4, 6, and 6.9). The thermal decomposition of inorganic carbonate (CO32-) and the loss of organic components rendered a crystallographic rearrangement (blueshift of the PO43- peak) and mineral transformation with increasing temperatures. The mineral transformation from B-type to AB- and A-type carbonate substitution occurred mainly at <700 °C, while the transformation from carbonated hydroxyapatite (CHAp) to more mineralogically and chemically stable HAp occurred at >800 °C. The loss of inorganic carbonate and the increase of structural OH- with increasing temperatures explained the change of pH buffering capacity and increase of pH and their dissolution behaviors. The higher peak area ratios of phosphate to carbonate and phosphate to amide I band with increasing temperatures corroborated the higher stability and resistivity to acidic dissolution by bone chars made at higher temperatures. Our findings suggest that bone char made at low to intermediate temperatures can be a substantial source of phosphorus for soil fertility via waste management and recycling. The bone char made at 500 °C exhibited a high pH buffering capacity in acidic and near-neutral solutions. The 700 °C bone char was proposed as a suitable liming agent for raising the soil pH and abating soil acidity. Our study has underpinned the systematic changes of bone char and interlinked the charring effect with their dissolution behavior, providing a scientific base for understanding the applicability of different bone chars as suitable P-fertilizers.


Assuntos
Osso e Ossos , Durapatita , Fertilizantes , Solubilidade , Temperatura
6.
Sci Total Environ ; 725: 138195, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32305642

RESUMO

Our study underpins the mechanism of organo-mineral interaction between black carbon (BC, biochar) and associated minerals in the historical BC-rich Amazonian Dark Earth (ADE) by using synchrotron-based microscopic (TXM), microspectroscopic (µFTIR) and spectroscopic (XAS and µ-diffraction) approaches. The BC-rich ADE contained over 100% more poorly crystalline minerals than the adjacent tropical soil. Linear combination fitting of k-spacing in the X-ray Absorption Spectra (XAS) revealed that ferrihydrite contributed to 81.1% of the Fe-minerals in BC. A small but distinct peak was observed at 5.7 Å-1 in the extended X-ray absorption fine structure k oscillation of BC, revealing the presence of FeC (including Fe-O-C) covalent bonds. No FeC path was yielded by the XAS fitting when an obvious peak downshift of the first (FeFe1) shell was observed, suggesting that the availability of inner-sphere FeC complexation was limited to the BC surface and interphase region. The main minerals for organo-mineral complexation were short-range-order (SRO) ferrihydrite on BC instead of corner-sharing FeO6 octahedra. Compared to ADE, the coordination number of the first (FeFe1) and second (FeFe2) shell was higher in BC, revealing a higher degree of order in coordination between the neighboring Fe mineral crystals. Black C limited the progressive aging of amorphous Fe phases and greatly enriched SRO ferrihydrite in the redox-fluctuating and high-leaching environment. The transformation of SRO ferrihydrite into the more crystalline Fe oxides was controlled by the local pH environment. A strong signal from the complexed phenolic group (aryl-OH, 1241 cm-1) and a distinct band of inner-sphere complexation (Fe-aryl C, 1380-1384 cm-1) were identified in the FTIR spectra. The enrichment of poorly crystalline minerals can have positive feedback on the long-term stabilization of BC. The scale-up application of biochar to agricultural and ecological systems may have a long-lasting impact on the enrichment and transformation of the SRO minerals in the soil.

7.
Sci Total Environ ; 721: 137670, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32171138

RESUMO

Biochar application to soil has attracted extensive attention worldwide due to its carbon (C) sequestration and fertility-enhancing properties. However, the lack of biochar accumulation in highly disturbed agroecosystems challenges the perceived long-term stability of biochars in soil. This 9-year field experiment was conducted in rice paddy fields to understand the temporal degradation of biochars produced from two contrasting feedstocks (rice straw vs. bamboo) at a high temperature (600 °C). Obvious physical alterations, surface oxidation, and transformation of condensed aromatic C occurred in biochars in the disturbed paddy field with frequent redox cycles. Increase in O/C atomic ratio, levels of high-temperature-sensitive degradable components, H/C ratio, and linear alkyl-C content were observed, which were indicative of time-dependent molecular changes and degradative transformation of biochars. Biochar degradation was characterized by the loss of labile C at an early stage and the degradation of aromatic C at a later stage. Based on the massive loss of C content in biochars (10.3-11.8%) and considerable degradation of aromatic C (5.0-8.7%) in 9 years, we argue that current biphasic C dynamic models probably overestimate the stability of biochars in agroecosystems such as rice paddy fields. Long-term field experiments (>5 years) are required to assess biochar's potential for C sequestration. This study provides long-term field data regarding the temporal changes in biochar physicochemical properties, which may facilitate the development of a robust assessment scheme on the long-term persistence of biochars in agroecosystems.


Assuntos
Oryza , Sequestro de Carbono , Carvão Vegetal , Solo
8.
J Hazard Mater ; 387: 121680, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31818657

RESUMO

The effects of an on-site biomass (rice straw) equivalent biochar-returning strategy (RSC) on rice yield, soil nutrients and bacterial community composition were examined in a four-year field trial (2013-2016) conducted in a paddy field in south China. Three treatments were set up including annual on-site biomass return (RS, rice straw at 8 t ha-1 yr-1), annual on-site biomass equivalent biochar-return (RSC, rice straw biochar at 2.8 t ha-1 yr-1 with a 35 % carbonization rate) and control (CK, no rice straw or biochar added). Results showed that a low rate of biochar application (RSC) could significantly increase rice yield in four successive years. The increase in rice yield was mainly attributed to the increase in soil potassium and magnesium contents resulting from the presence of the unique surface functional groups of biochar. As a result of biochar amendment, soil bacterial cooperative relationships were improved in the RSC, compared to those in the RS treatment. Our study indicated that RSC might be promoted as a promising strategy to enhance rice productivity and soil fertility in a sustainable way.


Assuntos
Bactérias/metabolismo , Carvão Vegetal/metabolismo , Produção Agrícola/métodos , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Solo/química , Microbiota/fisiologia
9.
Sci Rep ; 7(1): 3691, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623319

RESUMO

X-ray 3D tomographic techniques are powerful tools for investigating the morphology and internal structures of specimens. A common strategy for obtaining 3D tomography is to capture a series of 2D projections from different X-ray illumination angles of specimens mounted on a finely calibrated rotational stage. However, the reconstruction quality of 3D tomography relies on the precision and stability of the rotational stage, i.e. the accurate alignment of the 2D projections in the correct three-dimensional positions. This is a crucial problem for nano-tomographic techniques due to the non-negligible mechanical imperfection of the rotational stages at the nanometer level which significantly degrades the spatial resolution of reconstructed 3-D tomography. Even when using an X-ray micro-CT with a highly stabilized rotational stage, thermal effects caused by the CT system are not negligible and may cause sample drift. Here, we propose a markerless image auto-alignment algorithm based on an iterative method. This algorithm reduces the traditional projection matching method into two simplified matching problems and it is much faster and more reliable than traditional methods. This algorithm can greatly decrease hardware requirements for both nano-tomography and data processing and can be easily applied to other tomographic techniques, such as X-ray micro-CT and electron tomography.

10.
PLoS One ; 9(2): e88142, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24516596

RESUMO

Thin, filamentous, non-heterocystous, benthic cyanobacteria (Subsection III) from some marine, lacustrine and thermal environments aggregate into macroscopic cones and conical stromatolites. We investigate the uptake and storage of inorganic carbon by cone-forming cyanobacteria from Yellowstone National Park using high-resolution stable isotope mapping of labeled carbon (H(13)CO3 (-)) and immunoassays. Observations and incubation experiments in actively photosynthesizing enrichment cultures and field samples reveal the presence of abundant cyanophycin granules in the active growth layer of cones. These ultrastructurally heterogeneous granules rapidly accumulate newly fixed carbon and store 18% of the total particulate labeled carbon after 120 mins of incubation. The intracellular distribution of labeled carbon during the incubation experiment demonstrates an unexpectedly large contribution of PEP carboxylase to carbon fixation, and a large flow of carbon and nitrogen toward cyanophycin in thin filamentous, non-heterocystous cyanobacteria. This pattern does not occur in obvious response to a changing N or C status. Instead, it may suggest an unusual interplay between the regulation of carbon concentration mechanisms and accumulation of photorespiratory products that facilitates uptake of inorganic C and reduces photorespiration in the dense, surface-attached communities of cyanobacteria from Subsection III.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Carbono/metabolismo , Cianobactérias/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/fisiologia
11.
J Theor Biol ; 289: 90-5, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21840322

RESUMO

Microbes in natural settings typically live attached to surfaces in complex communities called biofilms. Despite the many advantages of biofilm formation, communal living forces microbes to compete with one another for resources. Here we combine mathematical models with stable isotope techniques to test a reaction-diffusion model of competition in a photosynthetic biofilm. In this model, a nutrient is transported through the mat by diffusion and is consumed at a rate proportional to its local concentration. When the nutrient is supplied from the surface of the biofilm, the balance between diffusion and consumption gives rise to gradients of nutrient availability, resulting in gradients of nutrient uptake. To test this model, a biofilm was incubated for a fixed amount of time with an isotopically labeled nutrient that was incorporated into cellular biomass. Thus, the concentration of labeled nutrient in a cell is a measure of the mean rate of nutrient incorporation over the course of the experiment. Comparison of this measurement to the solution of the reaction-diffusion model in the biofilm confirms the presence of gradients in nutrient uptake with the predicted shape. The excellent agreement between theory and experiment lends strong support to this one-parameter model of reaction and diffusion of nutrients in a biofilm. Having validated this model empirically, we discuss how these dynamics may arise from diffusion through a reactive heterogeneous medium. More generally, this result identifies stable isotope techniques as a powerful tool to test quantitative models of chemical transport through biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Modelos Biológicos , Biomassa , Isótopos de Carbono/farmacocinética , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Difusão , Espectrometria de Massas/métodos , Fotossíntese
12.
J Environ Qual ; 40(3): 704-18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21546657

RESUMO

We investigated speciation, oxidative state changes, and long- and short-term molecular-level dynamics of organic S after 365 d of aerobic incubation with and without the addition of sugarcane residue using XANES spectroscopy. Soil samples were collected from the upper 15 cm of undisturbed grasslands since 1880, from undisturbed grasslands since 1931, and from cultivated fields since 1880 in the western United States. We found three distinct groups of organosulfur compounds in these grassland-derived soils: (i) strongly reduced (S to S) organic S that encompasses thiols, monosulfides, disulfides, polysulfides, and thiophenes; (ii) organic S in intermediate oxidation (S to S) states, which include sulfoxides and sulfonates; and (iii) strongly oxidized (S) organic S, which comprises ester-SO-S. The first two groups represent S directly linked to C and accounted for 80% of the total organic S detected by XANES from the undisturbed soils. Aerobic incubation without the addition of sugarcane residue led to a 21% decline in organanosulfur compounds directly linked to C and to up to an 82% increase inorganic S directly bonded to O. Among the C-bonded S compounds, low-valence thiols, sulfides, thiophenic S, and intermediate-valence sulfoxide S seem to be highly susceptible to microbial attack and may represent the most reactive components of organic S pool in these grassland soils. Sulfonate S exhibited a much lower short-term reactivity. The incorporation of sugarcane residue resulted in an increase in organosulfur compounds directly bonded to C at the early stage of incubation. However, similar to soils incubated without residue addition, the proportion of organic S directly linked to C continued to decline with increasing duration of aerobic incubation, whereas the proportion of organic S directly bonded to O showed a steady rise.


Assuntos
Solo/química , Compostos de Enxofre/metabolismo , Enxofre/metabolismo , Agricultura , Oregon , Oxirredução , Solo/análise , Enxofre/análise , Enxofre/química , Compostos de Enxofre/análise , Compostos de Enxofre/química , Espectroscopia por Absorção de Raios X
13.
Microb Ecol ; 60(1): 192-205, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20574826

RESUMO

We compared the microbial community composition in soils from the Brazilian Amazon with two contrasting histories; anthrosols and their adjacent non-anthrosol soils of the same mineralogy. The anthrosols, also known as the Amazonian Dark Earths or terra preta, were managed by the indigenous pre-Colombian Indians between 500 and 8,700 years before present and are characterized by unusually high cation exchange capacity, phosphorus (P), and calcium (Ca) contents, and soil carbon pools that contain a high proportion of incompletely combusted biomass as biochar or black carbon (BC). We sampled paired anthrosol and unmodified soils from four locations in the Manaus, Brazil, region that differed in their current land use and soil type. Community DNA was extracted from sampled soils and characterized by use of denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism. DNA bands of interest from Bacteria and Archaea DGGE gels were cloned and sequenced. In cluster analyses of the DNA fingerprints, microbial communities from the anthrosols grouped together regardless of current land use or soil type and were distinct from those in their respective, paired adjacent soils. For the Archaea, the anthrosol communities diverged from the adjacent soils by over 90%. A greater overall richness was observed for Bacteria sequences as compared with those of the Archaea. Most of the sequences obtained were novel and matched those in databases at less than 98% similarity. Several sequences obtained only from the anthrosols grouped at 93% similarity with the Verrucomicrobia, a genus commonly found in rice paddies in the tropics. Sequences closely related to Proteobacteria and Cyanobacteria sp. were recovered only from adjacent soil samples. Sequences related to Pseudomonas, Acidobacteria, and Flexibacter sp. were recovered from both anthrosols and adjacent soils. The strong similarities among the microbial communities present in the anthrosols for both the Bacteria and Archaea suggests that the microbial community composition in these soils is controlled more strongly by their historical soil management than by soil type or current land use. The anthrosols had consistently higher concentrations of incompletely combusted organic black carbon material (BC), higher soil pH, and higher concentrations of P and Ca compared to their respective adjacent soils. Such characteristics may help to explain the longevity and distinctiveness of the anthrosols in the Amazonian landscape and guide us in recreating soils with sustained high fertility in otherwise nutrient-poor soils in modern times.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biodiversidade , Microbiologia do Solo , Solo/análise , Agricultura , Archaea/genética , Bactérias/genética , Brasil , Análise por Conglomerados , Impressões Digitais de DNA , DNA Arqueal/genética , DNA Bacteriano/genética , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
14.
Proc Natl Acad Sci U S A ; 106(27): 10939-43, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19564621

RESUMO

Conical stromatolites are thought to be robust indicators of the presence of photosynthetic and phototactic microbes in aquatic environments as early as 3.5 billion years ago. However, phototaxis alone cannot explain the ubiquity of disrupted, curled, and contorted laminae in the crests of many Mesoproterozoic, Paleoproterozoic, and some Archean conical stromatolites. Here, we demonstrate that cyanobacterial production of oxygen in the tips of modern conical aggregates creates contorted laminae and submillimeter-to-millimeter-scale enmeshed bubbles. Similarly sized fossil bubbles and contorted laminae may be present only in the crestal zones of some conical stromatolites 2.7 billion years old or younger. This implies not only that cyanobacteria built Proterozoic conical stromatolites but also that fossil bubbles may constrain the timing of the evolution of oxygenic photosynthesis.


Assuntos
Fósseis , Sedimentos Geológicos/microbiologia , Oxigênio/metabolismo , Fotossíntese , Archaea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...