Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(6): e202302857, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37872690

RESUMO

TiNb2 O7 with Wadsley-Roth phase delivers double theoretical specific capacity and similar working potential in comparison to spinel Li4 Ti5 O12 , the commercial high-rate anode material, and thus can enable much higher energy density of lithium-ion batteries. However, the inter-particle resistance within the high-mass-loading TiNb2 O7 electrode would impede the capacity release for practical application, especially under fast-charging conditions. Herein, 10-20 µm-size carbon-coated TiNb2 O7 secondary particle (SP-TiNb2 O7 ) consisting of initial micro-scale TiNb2 O7 particles (MP-TiNb2 O7 ) was fabricated. The high crystallinity of active material could enable fast-charge diffusion and electrochemical reaction rate within particles, and the small number of stacking layers of SP-TiNb2 O7 could reduce the large inter-particle resistance that regular particle electrode often possess and achieve high compaction density of electrodes with high mass loading. The investigation on materials structure and electrochemical reaction kinetics verified the advances of the as-fabricated SP-TiNb2 O7 in achieving superior electrochemical performance. The SP-TiNb2 O7 exhibited high reversible capacity of 292.7 mAh g-1 in the potential range of 1-3 V (Li+ /Li) at 0.1 C, delivering high-capacity release of 94.3 %, and high capacity retention of 86 % at 0.5 C for 250 cycles in half cell configuration. Particularly, the advances of such an anode were verified in practical 5 Ah-level laminated full pouch cell. The as-assembled LiFePO4 ||TiNb2 O7 full cell exhibited a high capacity of 5.08 Ah at high charging rate of 6 C (77.9 % of that at 0.2 C of 6.52 Ah), as well as an ultralow capacity decay rate of 0.0352 % for 250 cycles at 1 C, suggesting the great potential for practical fast-charging lithium-ion batteries.

2.
Nanoscale Adv ; 2(4): 1646-1653, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132329

RESUMO

Binary metal oxides are potential anode materials for lithium-ion storage due to their high theoretical specific capacities. However, the practical applications of metal oxides are limited due to their large volume changes and sluggish reaction kinetics. Herein, carbon coated Fe2(MoO4)3 nanosheets are prepared via a simple method, adopting urea as the template and carbon source. The carbon coating on the surface helps to elevate the conductivity of the active material and maintain structural integrity during the lithium storage process. Combining this with a catalytic effect from the generated Fe, leading to the reversible formation of a solid electrolyte interface layer, a high initial coulombic efficiency (>87%) can be obtained. Based on this, the carbon coated Fe2(MoO4)3 nanosheets show excellent rate capability (a reversible discharge capacity of 983 mA h g-1 at 5 A g-1) and stable cycling performance (1376 mA h g-1 after 250 cycles at 0.5 A g-1 and 864 mA h g-1 after 500 cycles at 2 A g-1). This simple in situ carbonization and template method using urea provides a facile way to optimize electrode materials for next-generation energy storage devices.

3.
Small ; 15(7): e1804706, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637951

RESUMO

Preventing the aggregation of nanosized electrode materials is a key point to fully utilize the advantage of the high capacity. In this work, a facile and low-cost surface solvation treatment is developed to synthesize Fe2 VO4 hierarchical porous microparticles, which efficiently prevents the aggregation of the Fe2 VO4 primary nanoparticles. The reaction between alcohol molecules and surface hydroxy groups is confirmed by density functional theory calculations and Fourier transform infrared spectroscopy. The electrochemical mechanism of Fe2 VO4 as lithium-ion battery anode is characterized by in situ X-ray diffraction for the first time. This electrode material is capable of delivering a high reversible discharge capacity of 799 mA h g-1 at 0.5 A g-1 with a high initial coulombic efficiency of 79%, and the capacity retention is 78% after 500 cycles. Moreover, a remarkable reversible discharge capacity of 679 mA h g-1 is achieved at 5 A g-1 . Furthermore, when tested as sodium-ion battery anode, a high reversible capacity of 382 mA h g-1 can be delivered at the current density of 1 A g-1 , which still retains at 229 mA h g-1 after 1000 cycles. The superior electrochemical performance makes it a potential anode material for high-rate and long-life lithium/sodium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...