Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 520-532, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484520

RESUMO

The instability and high electron-hole recombination have limited the application of black phosphorus (BP) as an excellent photocatalyst. To address these challenges, poly dimethyl diallyl ammonium chloride (PDDA), poly (allylamine hydrochloride) (PAH), and polyethyleneimine (PEI) are introduced to the functionalization of BP (F-BP), which can not only enhance its stability, but also boost the carrier transfer. Furthermore, a high-performance heterojunction photocatalyst is fabricated using F-BP and titania nanosheets (TNs) via a layer-by-layer self-assembly approach. The experimental outcomes unequivocally indicate that F-BP exhibits fast charge migration compared to BP. The density functional theory (DFT), in situ Kelvin-probe force microscopy (KPFM) and other advanced characterization techniques collectively unfold that PDDA modified BP can notably boost separation and propagation of charges, along with an enhanced carrier abundance. In summary, this novel strategy of using polyelectrolytes to enhance the electron transfer and the stability of BP permits immense potential in building next-generation BP-based high efficiency photocatalysts.

2.
J Colloid Interface Sci ; 590: 571-579, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581660

RESUMO

Layered double hydroxides (LDHs) has been regarded as one of the most potential photocatalysts for degradation of the pollutants, due to the tunable elements in the laminates, high surface area and exposed active sites. Developing a photocatalyst with a visible light activity and fast charge separation efficiency is a main research focus. In this work, a central-collapsed CoFeAl-LDHs was formed via the selective etching Al3+ in the laminates, which relied on the function of OH- produced by urea hydrolysis. The Central-collapsed structure of CoFeAl-LDHs exhibited enhanced adsorption activity and photocatalytic efficiency. The results show that the pseudo-second-order kinetic model and the Langmuir model are suitable for adsorption behavior. This etching cavity is beneficial to the adsorption of MB and provides a better platform for the direct interaction between MB and CoFeAl-LDHs. The morphology and photoelectrochemical properties of the central-collapsed structure of LDHs were characterized and used to explore the relationship between the etching degree and photocatalytic activity. The photocatalytic properties of all the samples under visible light irradiation were evaluated, and LDH-6 has the best photocatalytic activity. This work provides a novel approach for the fabrication of central-collapsed structure of layered double hydroxides photocatalysts to meet environmental and energy requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...