Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(12): 123503, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31893788

RESUMO

Proton radiography is used in various high-energy-density (HED) plasma experiments. In this paper, we describe a Monte Carlo and ray-tracing simulation tool called multimegaelectronvolt proton radiography (MPRAD) that can be used for modeling the deflection of proton beams in arbitrary three dimensional electromagnetic fields as well as the diffusion of the proton beams by Coulomb scattering and stopping power. The Coulomb scattering and stopping power models in cold matter and fully ionized plasma are combined using interpolation. We discuss the application of MPRAD in a few setups relevant to HED plasma experiments where the plasma density can play a role in diffusing the proton beams and affecting the prediction and interpretation of the proton images. It is shown how the diffusion due to plasma density can affect the resolution and dynamical range of the proton radiography.

2.
Med Phys ; 42(9): 5517-29, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26328999

RESUMO

PURPOSE: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. METHODS: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7-20 MeV) of an Elekta Infinity radiotherapy accelerator. RESULTS: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower energies. Energy calibration plots of peak mean energy versus peak mean position of the net mean dose profiles for each of the seven electron beams followed the shape predicted by the Lorentz force law for a uniform z-component of the magnetic field, validating its being modeled as uniform (0.542 ± 0.027 T). Measured Elekta energy spectra and their peak mean energies correlated with the 0.5-cm (7-13 MeV) and the 1.0-cm (13-20 MeV) R90 spacings of the %DD curves. The full-width-half-maximum of the energy spectra decreased with decreasing peak mean energy with the exception of the 9-MeV beam, which was anomalously wide. Similarly, R80-20 decreased linearly with peak mean energy with the exception of the 9 MeV beam. Both were attributed to suboptimal tuning of the high power phase shifter for the recycled radiofrequency power reentering the traveling wave accelerator. CONCLUSIONS: The apparatus and analysis techniques of the authors demonstrated that an inexpensive, lightweight, permanent magnet electron energy spectrometer can be used for measuring the electron energy distributions of therapeutic electron beams (6-20 MeV). The primary goal of future work is to develop a real-time spectrometer by incorporating a real-time imager, which has potential applications such as beam matching, ongoing beam tune maintenance, and measuring spectra for input into Monte Carlo beam calculations.


Assuntos
Elétrons/uso terapêutico , Imãs , Aceleradores de Partículas , Radioterapia/instrumentação , Análise Espectral/instrumentação
3.
Phys Rev Lett ; 102(10): 105001, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19392120

RESUMO

We measure up to 2x10;{10} positrons per steradian ejected out the back of approximately mm thick gold targets when illuminated with short ( approximately 1 ps) ultraintense ( approximately 1x10;{20} W/cm;{2}) laser pulses. Positrons are produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. Modeling based on the measurements indicate the positron density to be approximately 10;{16} positrons/cm;{3}, the highest ever created in the laboratory.

4.
Phys Rev Lett ; 92(17): 175005, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15169162

RESUMO

We report the long-term results of 2 1/2-dimensional particle-in-cell simulations of the relativistic expansion of strongly magnetized electron-positron plasmas. When the simulation is carried to >150 light-crossing time of the initial plasma, the plasma pulse exhibits a number of remarkable properties. These include the repeated bifurcation of the pulse profile, development of a power-law momentum distribution with low-energy cutoff, and a simple scaling law for the peak Lorentz factor.

5.
Phys Rev Lett ; 90(8): 085001, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633432

RESUMO

Using a 21 / 2-dimensional particle-in-cell (PIC) code to simulate the relativistic expansion of a magnetized collisionless plasma into a vacuum, we report a new mechanism in which the magnetic energy is efficiently converted into the directed kinetic energy of a small fraction of surface particles. We study this mechanism for both electron-positron and electron-ion (m(i)/m(e)=100, m(e) is the electron rest mass) plasmas. For the electron-positron case, the pairs can be accelerated to ultrarelativistic energies. For electron-ion plasmas, most of the energy gain goes to the ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...