Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(8): 1175-1184, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305434

RESUMO

Ascorbic acid (AA), which plays a vital role in the metabolism of the human body, is closely correlated with various diseases, including rheumatoid arthritis, scurvy, Parkinson's disease, urinary stones, and diarrhea. The detection of AA is of great significance for early prevention and diagnosis of related diseases. In this paper, a high-performance photoelectrochemical (PEC) sensor was constructed based on cadmium sulfide-gold (CdS-Au) composite nanomaterials for ultrasensitive ascorbic acid (AA) detection. Due to the localized surface plasmon resonance (LSPR) effect of gold nanoparticles (AuNPs), the PEC performance of CdS-Au composite nanomaterials was significantly improved compared to CdS semiconductor nanomaterials. Under the optimal conditions, the AA concentration was linearly related to the photocurrent signal in the range of 0.01 µM-200 µM, with the detection limit being 0.2 nM (S/N = 3) and the sensitivity being 642.9 µA mM-1 cm-2. In addition, the mechanism of the PEC sensor based on CdS-Au composite nanomaterials for ultrasensitive AA detection was discussed. Lastly, the self-constructed PEC sensors have been successfully applied in detecting AA in vitamin C tablets and actual blood samples, meeting the detection criteria required by the Chinese Pharmacopoeia (CP, 2020 edition). The self-fabricated PEC sensors in this paper are expected to be used for quality assessment of AA-related drugs and diagnosis of relevant diseases.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Ressonância de Plasmônio de Superfície , Ouro , Ácido Ascórbico
2.
Environ Sci Pollut Res Int ; 30(52): 112462-112473, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831237

RESUMO

Building Z-scheme heterojunctions with an electron bridge is a favored function for increasing photocatalytic activity. A facile approach for preparing g-C3N4/Ag@AgCl ternary heterojunctions by co-precipitation and photoreduction was established in this work. First, via co-precipitation, AgCl was modified on the surface of g-C3N4 to create a broad contact area between AgCl and g-C3N4. The AgCl is then reduced to Ag via an in-situ photoreduction technique, resulting in the formation of a ternary composite. The experimental results showed that when g-C3N4 modified 25% of the Ag@AgCl, that is, g-C3N4/Ag@AgCl-25 had the best photocatalytic performance, 94.9% of TC was degraded within 240 min, and the reaction rate to TC was 0.1214 min-1, which was 4.49 times and 8.12 times higher than that of g-C3N4 and Ag/AgCl, respectively. The excellent photocatalytic performance of g-C3N4/Ag@AgCl is attributed to the LSPR effect of Ag NPs and O-doping g-C3N4, which broadens the absorbance performance of g-C3N4, the establishment of Z-type heterojunctions between AgCl NPs and g-C3N4 NSs and Ag NPs as an electron transport bridge accelerate the photogenerated electrons transfer between AgCl and g-C3N4.


Assuntos
Elétrons , Águas Residuárias , Luz , Catálise , Antibacterianos , Tetraciclina
3.
Mikrochim Acta ; 187(9): 487, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32761498

RESUMO

An excellent atomic layer deposition (ALD) method was adopted for the controllable systhesis of a xFe2O3-nPt (or nPt-xFe2O3)-coated graphene nanostructure (xFe2O3-nPt@graphene). The produced nanomaterials have been characterized by transmission electron microscopy (TEM), cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS). It is shown that xFe2O3 and nPt were effectively tailored and deposited on the graphene. A simple, rapid, and sensitive electrochemical cytosensor based on the controllable nanomaterials was successfully developed for MCF-7 cells detection by combining the high affinity and specificity of an aptamer. The prepared cytosensor displays a linear response to MCF-7 in the concentration range 18 to 1.5 × 106 cell mL-1 with the detection limit of 6 cell mL-1 (at an S/N of 3). This cytosensor was applied to detect circulating tumor cells (CTCs) in patient blood and the results were satisfied. The experimental results indicate that the proposed controllable electrochemical cytosensor is highly-sensitive, and convenient for clinical detection of breast CTCs. Graphical abstract.


Assuntos
Técnicas Biossensoriais/métodos , Separação Celular/métodos , Grafite/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocompostos/química , Células Neoplásicas Circulantes/química , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Técnicas Eletroquímicas/métodos , Humanos , Limite de Detecção , Oligodesoxirribonucleotídeos/química , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...