Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 20(5)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37729925

RESUMO

Objective.The understanding of cognitive states is important for the development of human-machine systems (HMSs), and one of the fundamental but challenging issues is the understanding and assessment of the operator's mental stress state in real task scenarios.Approach.In this paper, a virtual unmanned vehicle (UAV) driving task with multi-challenge-level was created to explore the operator's mental stress, and the human brain activity during the task was tracked in real time via electroencephalography (EEG). A mental stress analysis dataset for the virtual UAV task was then developed and used to explore the neural activation patterns associated with mental stress activity. Finally, a multiple attention-based convolutional neural network (MACN) was constructed for automatic stress assessment using the extracted stress-sensitive neural activation features.Main Results.The statistical results of EEG power spectral density (PSD) showed that frontal theta-PSD decreased with increasing task difficulty, and central beta-PSD increased with increasing task difficulty, indicating that neural patterns showed different trends under different levels of mental stress. The performance of the proposed MACN was evaluated based on the dimensional model, and results showed that average three-class classification accuracies of 89.49%/89.88% were respectively achieved for arousal/valence.Significance.The results of this paper suggest that objective assessment of mental stress in a HMS based on a virtual UAV scenario is feasible, and the proposed method provides a promising solution for cognitive computing and applications in human-machine tasks.

2.
Brain Sci ; 13(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979183

RESUMO

The study of mental workload has attracted much interest in neuroergonomics, a frontier field of research. However, there appears no consensus on how to measure mental workload effectively because the mental workload is not only regulated by task difficulty but also affected by individual skill level reflected as mental schema. In this study, we investigated the alterations in the functional brain network induced by a 10-day simulated piloting task with different difficulty levels. Topological features quantifying global and local information communication and network organization were analyzed. It was found that during different tests, the global efficiency did not change, but the gravity center of the local efficiency of the network moved from the frontal to the posterior area; the small-worldness of the functional brain network became stronger. These results demonstrate the reconfiguration of the brain network during the development of mental schema. Furthermore, for the first two tests, the global and local efficiency did not have a consistent change trend under different difficulty levels, but after forming the developed mental schema, both of them decreased with the increase in task difficulty, showing sensitivity to the increase in mental workload. Our results demonstrate brain network reconfiguration during the motor learning process and reveal the importance of the developed mental schema for the accurate assessment of mental workload. We concluded that the efficiency of the brain network was associated with mental workload with developed mental schema.

3.
J Clin Neurosci ; 90: 351-358, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275574

RESUMO

Autism spectrum disorder (ASD) is a very serious neurodevelopmental disorder and diagnosis mainly depends on the clinical scale, which has a certain degree of subjectivity. It is necessary to make accurate evaluation by objective indicators. In this study, we enrolled 96 children aged from 3 to 6 years: 48 low-function autistic children (38 males and 10 females; mean±SD age: 4.9±1.1 years) and 48 typically developing (TD) children (38 males and 10 females; mean±SD age: 4.9 ± 1.2 years) to participate in our experiment. We investigated to fuse multi-features (entropy, relative power, coherence and bicoherence) to distinguish low-function autistic children and TD children accurately. Minimum redundancy maximum correlation algorithm was used to choose the features and support vector machine was used for classification. Ten-fold cross validation was used to test the accuracy of the model. Better classification result was obtained. We tried to provide a reliable basis for clinical evaluation and diagnosis for ASD.


Assuntos
Transtorno Autístico/classificação , Transtorno Autístico/diagnóstico , Eletroencefalografia/métodos , Algoritmos , Transtorno do Espectro Autista/classificação , Transtorno do Espectro Autista/diagnóstico por imagem , Criança , Pré-Escolar , Entropia , Feminino , Humanos , Masculino , Valores de Referência , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...