Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(8): 107476, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37599823

RESUMO

Mutations of the GABA-A receptor subunit ß1 (GABRB1) gene are found in autism patients. However, it remains unclear how mutations in Gabrb1 may lead to autism. We generated Gabrb1-/- mouse model, which showed autistic-like behaviors. We carried out RNA-seq on the hippocampus and found glutamatergic pathway may be involved. We further carried out single-cell RNA sequencing on the whole brain followed by qRT-PCR, immunofluorescence, electrophysiology, and metabolite detection on specific cell types. We identified the up-regulated Glul/Slc38a3 in astrocytes, Grin1/Grin2b in neurons, glutamate, and the ratio of Glu/GABA in the hippocampus. Consistent with these results, increased NMDAR-currents and reduced GABAAR-currents in the CA1 neurons were detected in Gabrb1-/- mice. NMDAR antagonist memantine or Glul inhibitor methionine sulfoximine could rescue the abnormal behaviors in Gabrb1-/- mice. Our data reveal that upregulation of the glutamatergic synapse pathway, including NMDARs at neuronal synapses and glutamine exported by astrocytes, may lead to autistic-like behaviors.

2.
Theranostics ; 11(19): 9296-9310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646371

RESUMO

Mutations in serotonin pathway genes, especially the serotonergic receptor subunit gene HTR3A, are associated with autism. However, the association of HTR3A deficiency with autism and the underlying mechanisms remain unknown. Methods: The Htr3a knockout (KO) mice were generated using transcription activator-like effector nuclease technology. Various behavior tests, including social interaction, social approach task, olfactory habituation/dishabituation, self-grooming, novel object recognition, contextual fear conditioning, elevated plus maze, open field and seizure susceptibility, were performed to assess the phenotypes. Transcriptome sequencing was carried out to search for molecular network and pathways underlying the phenotypes. Electrophysiological recordings, immunoblotting, immunofluorescence staining, immunoprecipitation, and quantitative real-time PCR were performed to verify the potential mechanisms. The N-methyl-D-aspartate receptor (NMDAR) antagonist memantine was used to treat the KO mice for rescuing the phenotypes. Results: The Htr3a KO mouse model showed three phenotypic domains: autistic-like behaviors (including impaired social behavior, cognitive deficits, and increased repetitive self-grooming), impaired memory, and attenuated susceptibility to pentylenetetrazol-induced seizures. We observed enhanced action potential-driven γ-aminobutyric acid-ergic (GABAergic) transmission in pyramidal neurons and decreased excitatory/inhibitory (E/I) ratio using the patch-clamp recording. Transcriptome sequencing on the hippocampus revealed the converged pathways of the dysregulated molecular networks underlying three phenotypic domains with upregulation of NMDAR. We speculated that Htr3a KO promotes an increase in GABA release through NMDAR upregulation. The electrophysiological recordings on hippocampal parvalbumin-positive (PV+) interneuron revealed increased NMDAR current and NMDAR-dependent excitability. The NMDAR antagonist memantine could rescue GABAergic transmission in the hippocampus and ameliorate autistic-like behaviors of the KO mice. Conclusion: Our data indicated that upregulation of the NMDAR in PV+ interneurons may play a critical role in regulating GABAergic input to pyramidal neurons and maybe involve in the pathogenesis of autism associated with HTR3A deficiency. Therefore, we suggest that the NMDAR system could be considered potential therapeutic target for autism.


Assuntos
Transtorno do Espectro Autista/genética , Neurônios GABAérgicos/metabolismo , Receptores 5-HT3 de Serotonina/genética , Animais , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Expressão Gênica/genética , Hipocampo/metabolismo , Masculino , Memória/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Receptores de GABA/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores 5-HT3 de Serotonina/metabolismo , Convulsões/fisiopatologia , Serotonina/metabolismo , Comportamento Social , Transcriptoma/genética , Ácido gama-Aminobutírico/metabolismo
3.
Theranostics ; 11(10): 5028-5044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754042

RESUMO

Background: Patients with preeclampsia display a spectrum of onset time and severity of clinical presentation, yet the underlying molecular bases for the early-onset and late-onset clinical subtypes are not known. Although several transcriptome studies have been done on placentae from PE patients, only a small number of differentially expressed genes have been identified due to very small sample sizes and no distinguishing of clinical subtypes. Methods: We carried out RNA-seq on 65 high-quality placenta samples, including 33 from 30 patients and 32 from 30 control subjects, to search for dysregulated genes and the molecular network and pathways they are involved in. Results: We identified two functionally distinct sets of dysregulated genes in the two major subtypes: 2,977 differentially expressed genes in early-onset severe preeclampsia, which are enriched with metabolism-related pathways, notably transporter functions; and 375 differentially expressed genes in late-onset severe preeclampsia, which are enriched with immune-related pathways. We also identified some key transcription factors, which may drive the widespread gene dysregulation in both early-onset and late-onset patients. Conclusion: These results suggest that early-onset and late-onset severe preeclampsia have different molecular mechanisms, whereas the late-onset mild preeclampsia may have no placenta-specific causal factors. A few regulators may be the key drivers of the dysregulated molecular pathways.


Assuntos
Expressão Gênica , Idade Gestacional , Placenta/metabolismo , Pré-Eclâmpsia/genética , Adulto , Metabolismo dos Carboidratos/genética , Proteínas de Transporte/genética , Feminino , Humanos , Fenômenos do Sistema Imunitário/genética , Gravidez , RNA-Seq , Índice de Gravidade de Doença , Transcriptoma
4.
Mol Autism ; 11(1): 13, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033586

RESUMO

Autism spectrum disorder (ASD) is a neuronal developmental disorder with impaired social interaction and communication, often with abnormal intelligence and comorbidity with epilepsy. Disturbances in synaptic transmission, including the GABAergic, glutamatergic, and serotonergic systems, are known to be involved in the pathogenesis of this disorder, yet we do not know if there is a common molecular mechanism. As mutations in the GABAergic receptor subunit gene GABRA4 are reported in patients with ASD, we eliminated the Gabra4 gene in mice and found that the Gabra4 knockout mice showed autistic-like behavior, enhanced spatial memory, and attenuated susceptibility to pentylenetetrazol-induced seizures, a constellation of symptoms resembling human high-functioning autism. To search for potential molecular pathways involved in these phenotypes, we performed a hippocampal transcriptome profiling, constructed a hippocampal interactome network, and revealed an upregulation of the NMDAR system at the center of the converged pathways underlying high-functioning autism-like and anti-epilepsy phenotypes.


Assuntos
Transtorno do Espectro Autista/genética , Epilepsia/genética , Aprendizagem , Receptores de GABA-A/genética , Receptores de N-Metil-D-Aspartato , Animais , Comportamento Animal , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...