Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Chem Biol Interact ; 387: 110809, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38006958

RESUMO

BACKGROUND: Hydroquinone (HQ), a major metabolite of benzene and known hematotoxic carcinogen. MicroRNA 1246 (miR-1246), an oncogene, regulates target genes in carcinogenesis including leukemia. This study investigates the impact of exosomal derived miR-1246 from HQ-transformed (HQ19) cells on cell-to-cell communication in recipient TK6 cells. METHODS: RNA sequencing was used to identify differentially expressed exosomal miRNAs in HQ19 cells and its phosphate buffered solution control cells (PBS19), which were then confirmed using qRT-PCR. The impact of exosomal miR-1246 derived from HQ-transformed cells on cell cycle distribution was investigated in recipient TK6 cells. RESULTS: RNA sequencing analysis revealed that 34 exosomal miRNAs were upregulated and 158 miRNAs were downregulated in HQ19 cells compared with PBS19 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses predicted that their targets are enriched in cancer development-related pathways, such as MAPK signaling, microRNAs in cancer, apoptosis, PI3K-Akt signaling, cell cycle, Ras signaling, and Chronic myeloid leukemia. Eleven miRNAs were confirmed to have differential expression through qRT-PCR, with 6 upregulated (miR-140-3p, miR-551b-3p, miR-7-5p, miR-1290, miR-92a-3p, and miR-1246) and 5 downregulated (miR-183-5p, miR-26a-5p, miR-30c-5p, miR-205-5p, and miR-99b-3p). Among these, miR-1246 exhibited the highest expression level. HQ exposure resulted in a concentration-dependent increase in miR-1246 levels and decrease Cyclin G2 (CCNG2) levels in TK6 cells. Similarly, exosomes from HQ19 exhibited similar effects as HQ exposure. Dual luciferase reporter gene assays indicated that miR-1246 could band to CCNG2. After HQ exposure, exosomal miR-1246 induced cell cycle arrest at the S phase, elevating the expression of genes like pRb, E2F1, and Cyclin D1 associated with S phase checkpoint. However, silencing miR-1246 caused G2/M-phase arrest. CONCLUSION: HQ-transformed cells' exosomal miR-1246 targets CCNG2, regulating TK6 cell cycle arrest, highlighting its potential as a biomarker for HQ-induced malignant transformation.


Assuntos
Ciclina G2 , MicroRNAs , Humanos , Ciclina G2/genética , Ciclina G2/metabolismo , Fase S , Hidroquinonas/toxicidade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transformação Celular Neoplásica
2.
Ecotoxicol Environ Saf ; 255: 114786, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934544

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to play a critical role in the damage caused to the body by environmental exogenous chemicals; however, few studies have explored their effects during exposure to benzene and its metabolite, hydroquinone (HQ). An emerging lncRNA, LINC01480, was found to be associated with the immune microenvironment of some cancers, but its specific function remains unknown. Therefore, this study aimed to investigate the role of LINC01480 in HQ-induced apoptosis. The biological function of LINC01480 was investigated through gain-of-function and loss-of-function experiments. Mechanically, nuclear-cytoplasmic fractionation experiment, chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay, and rescue experiments were performed. In this study, when TK6 cells were treated with HQ (0, 5, 10, and 20 µM) for 12, 24, 48, and 72 h, the expression of LINC01480 was increased in a dose-dependent manner. Meanwhile, the phosphorylation levels of PI3K and AKT decreased, and apoptosis increased. As compared to the control group, HQ-induced apoptosis was significantly reduced, and the relative survival rate of TK6 cells increased after silencing LINC01480, while overexpression of LINC01480 further sensitized TK6 cells to HQ-induced apoptotic cell death. LINC01480 negatively regulated the PI3K/AKT pathway in TK6 cells, and the apoptosis-inhibiting effect of LINC01480 silencing was reversed after inhibition of the PI3K/AKT pathway. In addition, ChIP and the dual-luciferase reporter assays showed that the transcription factor Foxo3a promoted LINC01480 transcription by directly binding to the promoter regions - 149 to - 138 of LINC01480. Moreover, short-term HQ exposure promoted the expression of Foxo3a. From these findings, we can conclude that LINC01480 is activated by Foxo3a, and promotes HQ-induced apoptosis by inhibiting the PI3K/AKT pathway, suggesting that LINC01480 might become a possible target for therapeutic intervention of HQ-induced toxicity.


Assuntos
RNA Longo não Codificante , Apoptose , Hidroquinonas/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia
4.
Toxicol Lett ; 373: 132-140, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36442682

RESUMO

Aflatoxin B1 (AFB1) is a human procarcinogen known to be activated by cytochrome P450 (CYP) 1A2 and 3A4. In a previous study AFB1 caused chromosomal rearrangement in a yeast strain genetically engineered for stably expressing human CYP1B1. Yet, further verification of the effect of AFB1 in human cells, a potential role of the aryl hydrocarbon receptor (AhR), and CYP1B1-catalyzed AFB1 metabolism remain unidentified. In this study, a human hepatocyte (L-02) line and a human lymphoblastoid (TK6) cell line were genetically engineered for the expression of human CYP1B1, producing L-02-hCYP1B1 and TK6-hCYP1B1, respectively. They were exposed to AFB1 and analyzed for the formation of micronucleus and elevation of γ-H2AX (indicating double-strand DNA breaks); the metabolites formed by CYP1B1 from AFB1 after incubation of AFB1 with human CYP1B1 isoenzyme microsomes were determined by LC-MS. The results showed significantly more potent induction of micronucleus by AFB1 in L-02-hCYP1B1 and TK6-hCYP1B1 than in the parental (L-02 and TK6) cells, and the effects were reduced by (E)- 2,3',4,5'-tetramethoxystilbene, a specific CYP1B1 inhibitor. In the AFB1- CYP1B1 microsomes incubations AFM1, a known stable metabolite of AFB1, was detected. Moreover, in L-02 and TK6 cells, AFB1 apparently increased the protein levels of AhR, ANRT and CYP1B1, and caused the nuclear translocation of AhR and ARNT, the latter effect being blocked by BAY-218 (an inhibitor of AhR). In conclusion, this study indicates that human CYP1B1 is capable of metabolically activating AFB1 through the AhR signaling pathway.


Assuntos
Aflatoxina B1 , Receptores de Hidrocarboneto Arílico , Humanos , Aflatoxina B1/toxicidade , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Microssomos/metabolismo , Linhagem Celular
5.
Toxicol Res (Camb) ; 11(5): 758-764, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337240

RESUMO

Patulin (PAT), a kind of mycotoxin, is a widely disseminated mycotoxin found in agricultural products. Although the existing research results show that PAT can cause nerve, immune, and skin toxicities, resulting in heart, liver, and kidney damages. However, evidence on the underlying mechanisms of PAT is still lacking. Present study aims to investigate the renal toxicity and related mechanisms of PAT on 293 T cells. Cell Counting Kit-8 method was used to reveal the dose-effect relationship and the time-effect relationship of PAT toxicity. Trypan blue staining and Hoechst 33342 staining were used to analyze PAT, which induced apoptosis on 293 T cells. Superoxide-dismutase (SOD), GSH, and malondialdehyde (MDA) were used to measure the changes of oxidative stress status of 293 T cells induced by PAT. The changes of reactive oxygen species (ROS) and ATP in mitochondria indicate the role of mitochondria when PAT induced cell damage and apoptosis. Through Cyt-C release assay analysis, caspase activity change, and correlation analysis, the potential mechanism of mitochondrial apoptosis pathway was proved. Results demonstrated that PAT significantly induced cell injury, and with the increase of time and concentration, the cell survival rate decreased significantly. Hoechst 33342 staining and Trypan blue staining showed that apoptosis rate was elevated by PAT. As PAT concentration increased, intracellular SOD, glutathion peroxidase activities were decreased and the MDA content was increased. The decrease of intracellular ATP level and accumulation of ROS content indicated an increased permeability of the mitochondrial membrane. Overexpression of Cyt-C activated the cascade reaction of caspase enzyme, leading to apoptosis. The results of enzyme activity assay and correlation analysis indicated that caspase 3 was the most critical caspase in the cascade system and that it was most correlated with caspase 8 and caspase 9.

7.
Environ Res ; 215(Pt 2): 114383, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150442

RESUMO

The Songshan Lake Science and Technology Industrial Park is a national economic transition demonstration area, which centers at a traditional industrial region, in Dongguan, China. We were interested in the involved atmospheric particulates-bound PAHs regarding their sources, cancer risk, and related cellular toxicity for those in other areas under comparable conditions. In this study, the daily concentrations of TSP, PM10, and PM2.5 were averaged 127.95, 95.91, and 67.62 µg/m3, and the bound PAHs were averaged 1.31, 1.22, and 0.77 ng/m3 in summer and 12.72, 20.51 and 40.27 ng/m3 in winter, respectively. The dominant PAHs were those with 5-6 rings, and 4-6 rings in summer and winter, respectively. The incremental lifetime cancer risk (ILCR) (90th percentile probability) of total PAHs was above 1.00E-06 in each age group, particularly high in adolescents. Sensitivity analysis indicated that slope factor and body weight had greater impact than exposure duration and inhalation rate on the ILCR. Moreover, treatment of human bronchial epithelial BEAS-2B cells with mixed five indicative PAHs increased the formation of ROS, DNA damage (elevation in γ-H2AX), and protein levels of CAR, PXR, CYP1A1, 1A2, 1B1, while reduced the AhR protein, with the winter mixture more potent than summer. For the sources of PAHs, the stable carbon isotope ratio analysis and diagnostic ratios consistently pointed to petroleum and fossil fuel combustion as major sources. In conclusion, our findings suggest that particulates-bound PAHs deserve serious concerns for a cancer risk in such environment, and the development of new power sources for reducing fossil fuel combustion is highly encouraged.


Assuntos
Poluentes Atmosféricos , Neoplasias , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Adolescente , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Isótopos de Carbono , China , Carvão Mineral/análise , Citocromo P-450 CYP1A1 , Poeira/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espécies Reativas de Oxigênio/análise , Medição de Risco , Rios , Estações do Ano
8.
Ecotoxicol Environ Saf ; 241: 113757, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35714482

RESUMO

Reprogramming of cellular metabolism is a vital event during tumorigenesis. The role of glycolysis in malignant progression promoted by hydroquinone (HQ), one of the metabolic products of benzene, remains to be understood. Recently, we reported the overexpression of sirtuin 1 (SIRT1) in HQ-enhanced malignant progression of TK6 cells and hypothesized that SIRT1 might contribute to glycolysis and favor tumorigenesis. Our data showed that acute exposure of TK6 cells to HQ for 48 h inhibited glycolysis, as indicated by reduction in glucose consumption, lactate production, hexokinase activity, and the expression of SIRT1 and glycolytic enzymes, including HIF-1α, hexokinase-2 (HK-2), ENO-1, glucose transporter 1 (Glut-1), and lactic dehydrogenase A (LDHA). Knockdown of SIRT1 or inhibition of glycolysis using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) downregulated the levels of SIRT1 and glycolytic enzymes and significantly enhanced HQ-induced cell apoptosis, although knockdown of SIRT1 or 2-DG alone had little effect on apoptosis. Furthermore, immunofluorescence and Co-IP assays demonstrated that SIRT1 regulated the expression of HK-2, and HQ treatment caused a decrease in SIRT1 and HK-2 binding to mitochondria. Importantly, we found that glycolysis was promoted with increasing HQ treatment weeks. Long-term HQ exposure increased the expression of SIRT1 and several glycolytic enzymes and promoted malignant cell progression. Moreover, compared with the PBS group, glucose consumption and lactate production increased after 10 weeks of HQ exposure, and the protein levels of SIRT1 and HK-2 were increased after 15 weeks of HQ exposure, while those of Glut-1, ENO-1, and LDHA were elevated. In addition, SIRT1 knockdown HQ 19 cells exhibited decreased lactate production, glucose consumption, glycolytic enzymes expression, cell growth, and tumor formation in nude mice. Our findings identify the high expression of SIRT1 as a strong oncogenic driver that positively regulates HK-2 and promotes glycolysis in HQ-accelerated malignant progression of TK6 cells.


Assuntos
Hexoquinase , Sirtuína 1 , Animais , Carcinogênese , Glucose , Glicólise , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Hidroquinonas/toxicidade , Lactatos , Camundongos , Camundongos Nus , Sirtuína 1/genética , Sirtuína 1/metabolismo
9.
Ecotoxicol Environ Saf ; 232: 113259, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121258

RESUMO

Hydroquinone (HQ), a key metabolite of benzene, affects cell cycle and apoptosis. Poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in DNA damage repair. To explore whether PARP-1 is involved in HQ-induced cell cycle and apoptosis, we assessed the effect of PARP-1 suppression and overexpression on induction of cell cycle and apoptosis analyzed by flow cytometry analysis. We observed that HQ induced aberrant cell cycle progression and apoptosis. We further confirmed that PARP-1 suppression accelerated the cell cycle progression and inhibited cell apoptosis via inhibiting p16/pRb signal pathway after acute HQ exposure, while overexpression of PARP-1 displayed the opposite results. Therefore, we concluded that HQ-induced cell cycle and apoptosis were regulated by PARP-1 through activation of p16/pRb signaling pathway.


Assuntos
Hidroquinonas , Ribose , Difosfato de Adenosina/farmacologia , Apoptose , Ciclo Celular , Hidroquinonas/toxicidade , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ribose/farmacologia , Transdução de Sinais
10.
Toxicon ; 206: 64-73, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34968565

RESUMO

Patulin (PAT) a kind of mycotoxin, is a widely disseminated mycotoxin found in agricultural products and could cause liver damage. However, evidence on the underlying mechanisms of patulin is still lacking. In the present study, Human liver cancer cells (HepG2) together with a mouse model were used to explore the possible effect and mechanism. The results demonstrated that PAT treatment inhibited cell proliferation and caused liver toxicity in mice. In vitro, PAT inhibited the growth of HepG2 cells in a dose-dependent manner and a time-dependent manner; lipid peroxidation, malondialdehyde (MDA) production increased and the level of SOD and GSH in cells changed significantly. In vivo, Kunming mice were treated with PAT(2.5-15 µM), We indicated that liver damage are observed. The activity of serum alanine transaminase (ALT) and aspartate transaminase (AST) were increased significantly, the hepatocyte nucleus stained with Hematoxylin and Eosin (HE) was blurred and deformed. we also explored the lipid peroxidation and enzymes related to redox and found that the activities of SOD in animals do not change significantly, not like that in cells, while GSHpx played a major role. In addition, we measured the caspase activity of cells and the expression of caspase in mice. PAT-induced the caspase cascade was confirmed with the elevation of the activity and expression of caspase. These data suggest that PAT treatment altered both the redox systems in cells and animals. involvement of caspase in patulin-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Patulina , Animais , Animais não Endogâmicos , Caspase 3 , Caspases , Peroxidação de Lipídeos , Camundongos , Patulina/toxicidade
11.
Toxicon ; 207: 21-30, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34929212

RESUMO

Patulin (PAT) is a kind of mycotoxins that is universally found at rotten fruits, especially apples and apple products. Previous studies have shown that PAT has hepatotoxicity and nephrotoxicity. However, cardiotoxicity of PAT is rarely reported. Present study aimed at investigate the cardiotoxicity and relevant mechanisms of PAT on H9c2 cells. Cytotoxicity of PAT were evaluated by MTT assay and LDH. Hoechst 33258 staining was used to examine the nuclear morphology and AV/PI double staining was employed for apoptosis on H9c2 cells. Expression level of Caspase-3, Caspase-9, Bax, Bcl-2 were quantified to verify the potential mechanism of mitochondrial apoptosis pathway. The tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin 6 (IL-6) were quantified to determine the inflammatory response by using ELISA assay. ROS, SOD, MDA, GSH levels were measured to determine the oxidative stress status. Results demonstrated that PAT significantly induced cell injury, as evidenced by the down-regulated of cell viability, and the increase of LDH release. Hoesst33258 staining and flow cytometry showed that apoptosis rate was elevated by PAT. PAT treatment up-regulated the expression of Caspase-3, Caspase-9, Bax level and down-regulated the expression of Bcl-2 level. TNF-α, IL-1ß, IL-6 levels showed that PAT increased the pro-inflammatory response. As PAT concentration increased, intracellular MDA, ROS content were elevated, while GSH content and the activity of SOD were significantly decreased. Thus, it is concluded that PAT may induce apoptosis of H9c2 cells through oxidative stress.


Assuntos
Patulina , Apoptose , Cardiotoxicidade/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo , Patulina/toxicidade
12.
Ecotoxicol Environ Saf ; 225: 112758, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34507038

RESUMO

Endocrine-disrupting chemicals (EDCs) in the effluent from wastewater treatment plants (WWTPs) are an important pollutant sources of the aquatic system. In this study, the removal efficiencies of eight typical EDCs at two domestic WWTPs in Dongguan City, China, are reported based on instrumental analysis and bioassay results. Bioactivities, including steroidogenesis-disrupting effects, estrogen receptor (ER)-binding activity, and aryl hydrocarbon receptor (AhR)-binding activity were evaluated using the H295R, MVLN, and H4IIE cell bioassays, respectively. The potential environmental risks of these residual EDCs were also evaluated. The results of instrumental analysis showed that nonylphenol was the major chemical type present among the eight tested EDCs. Meanwhile, concentrations of estrogen compounds including estrone, 17ß-estradiol (E2), estriol, 17α-ethinyl estradiol, and diethylstilbestrol were relatively low. The removal rates of all eight EDCs were relatively high. Although the chemical analysis indicated high removal efficiency, the bioassay results showed that steroidogenesis-disrupting effects as well as ER-binding and AhR-binding activities remained, with E2-equivalent values of effluent samples ranging from 0.16 to 0.9 ng·L-1, and 2,3,7,8-tetrachlorodibenzo-p-dioxin-equivalent values ranging from 0.61 to 4.09 ng L-1. Principal component analysis combined with regression analysis suggests that the chemicals analyzed in this study were partly responsible for these ER and AhR activities. Ecological risk assessment of the residual EDCs showed that estrone was the most hazardous chemical among the eight EDCs tested, with a risk quotient of 1.44-5.50. Overall, this study suggests that, despite high apparent removal efficiencies of typical EDCs, their bioactivities and potential ecological risks cannot be ignored.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Purificação da Água , Disruptores Endócrinos/análise , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental , Medição de Risco , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Front Mol Biosci ; 8: 674863, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055889

RESUMO

BACKGROUND: The coiled-coil domain containing (CCDC) family proteins have important biological functions in various diseases. However, the coiled-coil domain containing 137 (CCDC137) was rarely studied. We aim to investigate the role of CCDC137 in pan-cancer. METHODS: CCDC137 expression was evaluated in RNA sequence expression profilers of pan-cancer and normal tissues from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. The influence of CCDC137 on the prognosis of tumor patients was analyzed using clinical survival data from TCGA. Function and pathway enrichment analysis was performed to explore the role of CCDC137 using the R package "clusterProfiler." We further analyzed the correlation of immune cell infiltration score of TCGA samples and CCDC137 expression using TIMER2 online database. RESULTS: CCDC137 was over-expressed and associated with worse survival status in various tumor types. CCDC137 expression was positively correlated with tumor associated macrophages (TAMs) and cancer associated fibroblasts (CAFs) in Lower Grade Glioma (LGG) and Uveal Melanoma (UVM). In addition, high CCDC137 expression was positively correlated with most immunosuppressive genes, including TGFB1, PD-L1, and IL10RB in LGG and UVM. CONCLUSIONS: Our study identified CCDC137 as an oncogene and predictor of worse survival in most tumor types. High CCDC137 may contribute to elevated infiltration of TAMs and CAFs and be associated with tumor immunosuppressive status.

14.
Environ Toxicol ; 36(8): 1591-1599, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932074

RESUMO

The p16INK4A is a multifunction gene that includes regulation of the cell cycle, apoptosis, senescence and tumor development. However, the effects of p16 in hydroquinone-induced malignant transformation of TK6 cells remain unclear. The present study aimed to explore whether p16 loss facilitate malignant transformation in TK6 cells. The results demonstrated that p16/Rb signal pathway was suppressed in hydroquinone-induced malignant transformation of TK6 cells. We further confirmed that p16 loss stimulated cell proliferation, and accelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that p16 regulated cell cycle progression via Rb and p53. Therefore, we conclude that p16 is involved in HQ-induced malignant transformation associated with suppressing Rb and p53 which resulting in accelerating the cell cycle progression.


Assuntos
Transformação Celular Neoplásica , Hidroquinonas , Ciclo Celular , Divisão Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Humanos
15.
Toxicol In Vitro ; 74: 105153, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33771647

RESUMO

Poly(ADP-ribose)polymerase-1 (PARP-1) plays a crucial role in DNA damage repair and could be viewed as both a tumor promoter and tumor-suppressor gene. However, the effects of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells remain to be further elucidated. The present research evaluated the potential mechanism of PARP-1 in hydroquinone-induced malignant transformation of TK6 cells. The results indicated that high PARP-1 inhibited TK6 cells malignant transformation after chronic exposure to HQ. We further confirmed that PARP-1 overexpression blocked cell proliferation, and decelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that PARP-1 regulated cell cycle progression via p16/Rb and p53. Therefore, we conclude that PARP-1 is involved in HQ-induced malignant transformation associated with increasing p16/Rb and p53 which resulting in decelerating the cell cycle progression.


Assuntos
Transformação Celular Neoplásica/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Hidroquinonas/toxicidade , Poli(ADP-Ribose) Polimerase-1/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Biomed Res Int ; 2019: 6424651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531361

RESUMO

DPPH• scavenging peptides (<3kDa) from underutilized Dunaliella salina protein were obtained by the following successive treatment, i.e., ultrasound extraction, simulated in vitro gastrointestinal digestion hydrolyzation, and membrane ultrafiltration classification. The optimal condition for ultrasound-assisted extraction was an ultrasound wave with 800 W of power treating a mixture of 60 mL of 1.0 mol L-1 NaOH and 2 g algae powder for 15 min. A high correlation (r=0.8146) between DPPH• scavenging activity and yield of the intact peptides showed their antioxidant capacity. Simulated in vitro digestion assay resulted in excellent DPPH• scavenging activity of the total peptide, amounting to (86.5 ± 10.1)%, comparing with the nondigestion samples at (46.8 ± 6.5)%. After fractionation, the 500-1000 Da fraction exhibited the highest DPPH• scavenging activity (81.2 ± 4.0)%, increasing 1.5 times due to digestion. Then, the 500-1000 Da fraction was analyzed by RPLC-Q Exactive HF mass spectrometer, and 4 novel peptides, i.e., Ile-Leu-Thr-Lys-Ala-Ala-Ile-Glu-Gly-Lys, Ile-Ile-Tyr-Phe-Gln-Gly-Lys, Asn-Asp-Pro-Ser-Thr-Val-Lys, and Thr-Val-Arg-Pro-Pro-Gln-Arg, were identified. From these amino acid sequences, hydrophobic residues accounted for 56%, which indicated their high antioxidant property. The results indicated that underutilized protein of Dunaliella salina could be a potential source of antioxidative peptides through simulated in vitro gastrointestinal digestion.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Clorofíceas/química , Suco Gástrico/química , Peptídeos/química , Peptídeos/farmacologia , Proteínas/química , Compostos de Bifenilo/química , Microalgas/química , Picratos/química
17.
Int J Mol Sci ; 19(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874795

RESUMO

Cervical cancer is a common gynecological malignancy with high incidence and mortality. Drugs commonly used in chemotherapy are often accompanied by strong side-effects. To find an anti-cervical cancer drug with high effects and low toxicity, luteoloside was used to treat the cervical cancer cell line Hela to investigate its effects on cell morphology, proliferation, apoptosis, and related proteins. The study demonstrated that luteoloside could inhibit proliferation remarkably; promote apoptosis and cytochrome C release; decrease the mitochondrial membrane potential and reactive oxygen species level; upregulate the expression of Fas, Bax, p53, phospho-p38, phospho-JNK, and cleaved PARP; downregulate the expression of Bcl-2 and phospho-mTOR; activate caspase-3 and caspase-8; change the nuclear morphology, and fragmentate DNA in Hela cells. These results strongly suggest that luteoloside can significantly inhibit the proliferation and trigger apoptosis in Hela cells. In contrast, luteoloside had less proliferation inhibiting effects on the normal cell lines HUVEC12 and LO2, and minor apoptosis promoting effects on HUVEC12 cells. Furthermore, the luteoloside-induced apoptosis in Hela cells is mediated by both intrinsic and extrinsic pathways and the effects of luteoloside may be regulated by the mitogen-activated protein kinases and mTOR signaling pathways via p53.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glucosídeos/administração & dosagem , Luteolina/administração & dosagem , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , MAP Quinase Quinase 1/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
18.
Chem Biol Interact ; 283: 84-90, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421518

RESUMO

Hydroquinone (HQ), one of the major metabolic products of benzene, is a carcinogen, which induces apoptosis and inhibit proliferation in lymphoma cells. microRNA-7-5p (miR-7-5p), a tumor suppressor, participates in various biological processes including cell proliferation and apoptosis regulation by repressing expression of specific oncogenic target genes. To explore whether miR-7-5p is involved in HQ-induced cell proliferation and apoptosis, we assessed the effect of miR-7-5p overexpression on induction of apoptosis analyzed by FACSCalibur flow cytometer in transfection of TK6 cells with miR-7-5p mimic (TK6- miR-7-5p). We observed an increased apoptosis by 25.43% and decreased proliferation by 28.30% in TK6-miR-7-5p cells compared to those negative control cells (TK6-shNC) in response to HQ treatment. Furthermore, HQ might active the apoptotic pathway via partly downregulation the expression of BRCA1 and PARP-1, followed by p53 activation, in TK6-miR-7-5p cells. In contrast, attenuated p53 and BRCA1 expression was observed in shPARP-1 cells than in NC cells after HQ treatment. Therefore, we conclude that HQ may activate apoptotic signals via inhibiting the tumor suppressive effects of miR-7-5p, which may be mediated partly by upregulating the expression of PARP-1 and BRCA1 in control cells. The increase of miR-7-5p expression further intensified downregulation of PARP-1 and BRCA1 in TK6-miR-7-5p cells, resulting in an increase of apoptosis and proliferation inhibited.


Assuntos
Apoptose/efeitos dos fármacos , Proteína BRCA1/metabolismo , Proliferação de Células/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Hidroquinonas/farmacologia , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Regiões 3' não Traduzidas , Antagomirs/metabolismo , Proteína BRCA1/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Environ Mol Mutagen ; 59(1): 49-59, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28843007

RESUMO

B cell leukemia/lymphoma-2 (Bcl-2) suppresses apoptosis by binding the BH3 domain of proapoptotic factors and thereby regulating mitochondrial membrane potential (MMP). This study aimed to investigate the role of Bcl-2 in controlling the mitochondrial pathway of apoptosis during hydroquinone (HQ)-induced TK6 cytotoxicity. In this study, HQ, one metabolite of benzene, decreased the MMP in a concentration-dependent manner and induced the generation of reactive oxygen species (ROS), the activation of the DNA damage marker γ-H2AX, and production of the DNA damage-responsive enzyme poly(ADP-ribose)polymerase-1 (PARP-1). Exposure of TK6 cells to HQ leads to an increase in Bcl-2 and co-localization with PARP-1 in the cytoplasm. Inhibition of Bcl-2 using the BH3 mimetic, ABT-737, suppressed the PARP-1 nuclear to cytoplasm translocation and sensitized TK6 cells to HQ-induced apoptosis through depolarization of the MMP. Western blot analysis indicated that ABT-737 combined with HQ increased the levels of cleaved PARP and γ-H2AX, but significantly decreased the level of P53. Thus, ABT-737 can influence PARP-1 translocation and induce apoptosis via mitochondria-mediated apoptotic pathway, independently of P53. In addition, we found that knockdown of PARP-1 attenuated the HQ-induced production of cleaved PARP and P53. These results identify Bcl-2 as a protective mediator of HQ-induced apoptosis and show that upregulation of Bcl-2 helps to localize PARP-1 to the cytoplasm and stabilize MMP. Environ. Mol. Mutagen. 59:49-59, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Apoptose/fisiologia , Hidroquinonas/efeitos adversos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
20.
Oncotarget ; 8(56): 95554-95567, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221148

RESUMO

Previous studies have shown that long noncoding RNAs (lncRNAs) were related to human carcinogenesis and might be designated as diagnosis and prognosis biomarkers. Hydroquinone (HQ), as one of the metabolites of benzene, was closely relevant to occupational benzene poisoning and occupational leukemia. Using high-throughput sequencing technology, we investigated differences in lncRNA and mRNA expression profiles between experimental group (HQ 20 µmol/L) and control group (PBS). Compared to control group, a total of 65 lncRNAs and 186 mRNAs were previously identified to be aberrantly expressed more than two fold change in experimental group. To validate the sequencing results, we selected 10 lncRNAs and 10 mRNAs for quantitative real-time PCR (qRT-PCR). Through GO annotation and KEGG pathway analysis, we obtained 3 mainly signaling pathways, including P53 signaling pathway, which plays an important role in tumorigenesis and progression. After that, 25 lncRNAs and 32 mRNAs formed the lncRNA-mRNA co-expression network were implemented to play biological functions of the dysregulated lncRNAs transcripts by regulating gene expression. The lncRNAs target genes prediction provided a new idea for the study of lncRNAs. Finally, we have another important discovery, which is screened out 11 new lncRNAs without annotated. All these results uncovered that lncRNA and mRNA expression profiles in TK6 cells exposed to low dose HQ were different from control group, helping to further study the toxicity mechanisms of HQ and providing a new direction for the therapy of leukemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...