Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915583

RESUMO

Postnatal genomic regulation significantly influences tissue and organ maturation but is under-studied relative to existing genomic catalogs of adult tissues or prenatal development in mouse. The ENCODE4 consortium generated the first comprehensive single-nucleus resource of postnatal regulatory events across a diverse set of mouse tissues. The collection spans seven postnatal time points, mirroring human development from childhood to adulthood, and encompasses five core tissues. We identified 30 cell types, further subdivided into 69 subtypes and cell states across adrenal gland, left cerebral cortex, hippocampus, heart, and gastrocnemius muscle. Our annotations cover both known and novel cell differentiation dynamics ranging from early hippocampal neurogenesis to a new sex-specific adrenal gland population during puberty. We used an ensemble Latent Dirichlet Allocation strategy with a curated vocabulary of 2,701 regulatory genes to identify regulatory "topics," each of which is a gene vector, linked to cell type differentiation, subtype specialization, and transitions between cell states. We find recurrent regulatory topics in tissue-resident macrophages, neural cell types, endothelial cells across multiple tissues, and cycling cells of the adrenal gland and heart. Cell-type-specific topics are enriched in transcription factors and microRNA host genes, while chromatin regulators dominate mitosis topics. Corresponding chromatin accessibility data reveal dynamic and sex-specific regulatory elements, with enriched motifs matching transcription factors in regulatory topics. Together, these analyses identify both tissue-specific and common regulatory programs in postnatal development across multiple tissues through the lens of the factors regulating transcription.

2.
Alzheimers Dement ; 20(4): 2922-2942, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460121

RESUMO

INTRODUCTION: The BIN1 coding variant rs138047593 (K358R) is linked to Late-Onset Alzheimer's Disease (LOAD) via targeted exome sequencing. METHODS: To elucidate the functional consequences of this rare coding variant on brain amyloidosis and neuroinflammation, we generated BIN1K358R knock-in mice using CRISPR/Cas9 technology. These mice were subsequently bred with 5xFAD transgenic mice, which serve as a model for Alzheimer's pathology. RESULTS: The presence of the BIN1K358R variant leads to increased cerebral amyloid deposition, with a dampened response of astrocytes and oligodendrocytes, but not microglia, at both the cellular and transcriptional levels. This correlates with decreased neurofilament light chain in both plasma and brain tissue. Synaptic densities are significantly increased in both wild-type and 5xFAD backgrounds homozygous for the BIN1K358R variant. DISCUSSION: The BIN1 K358R variant modulates amyloid pathology in 5xFAD mice, attenuates the astrocytic and oligodendrocytic responses to amyloid plaques, decreases damage markers, and elevates synaptic densities. HIGHLIGHTS: BIN1 rs138047593 (K358R) coding variant is associated with increased risk of LOAD. BIN1 K358R variant increases amyloid plaque load in 12-month-old 5xFAD mice. BIN1 K358R variant dampens astrocytic and oligodendrocytic response to plaques. BIN1 K358R variant decreases neuronal damage in 5xFAD mice. BIN1 K358R upregulates synaptic densities and modulates synaptic transmission.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Neuroglia/patologia , Placa Amiloide/patologia , Humanos
3.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464087

RESUMO

The gene expression profiles of distinct cell types reflect complex genomic interactions among multiple simultaneous biological processes within each cell that can be altered by disease progression as well as genetic background. The identification of these active cellular programs is an open challenge in the analysis of single-cell RNA-seq data. Latent Dirichlet Allocation (LDA) is a generative method used to identify recurring patterns in counts data, commonly referred to as topics that can be used to interpret the state of each cell. However, LDA's interpretability is hindered by several key factors including the hyperparameter selection of the number of topics as well as the variability in topic definitions due to random initialization. We developed Topyfic, a Reproducible LDA (rLDA) package, to accurately infer the identity and activity of cellular programs in single-cell data, providing insights into the relative contributions of each program in individual cells. We apply Topyfic to brain single-cell and single-nucleus datasets of two 5xFAD mouse models of Alzheimer's disease crossed with C57BL6/J or CAST/EiJ mice to identify distinct cell types and states in different cell types such as microglia. We find that 8-month 5xFAD/Cast F1 males show higher level of microglial activation than matching 5xFAD/BL6 F1 males, whereas female mice show similar levels of microglial activation. We show that regulatory genes such as TFs, microRNA host genes, and chromatin regulatory genes alone capture cell types and cell states. Our study highlights how topic modeling with a limited vocabulary of regulatory genes can identify gene expression programs in single-cell data in order to quantify similar and divergent cell states in distinct genotypes.

4.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292896

RESUMO

The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.

5.
Mol Neurodegener ; 18(1): 12, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803190

RESUMO

BACKGROUND: The TREM2 R47H variant is one of the strongest genetic risk factors for late-onset Alzheimer's Disease (AD). Unfortunately, many current Trem2 R47H mouse models are associated with cryptic mRNA splicing of the mutant allele that produces a confounding reduction in protein product. To overcome this issue, we developed the Trem2R47H NSS (Normal Splice Site) mouse model in which the Trem2 allele is expressed at a similar level to the wild-type Trem2 allele without evidence of cryptic splicing products. METHODS: Trem2R47H NSS mice were treated with the demyelinating agent cuprizone, or crossed with the 5xFAD mouse model of amyloidosis, to explore the impact of the TREM2 R47H variant on inflammatory responses to demyelination, plaque development, and the brain's response to plaques. RESULTS: Trem2R47H NSS mice display an appropriate inflammatory response to cuprizone challenge, and do not recapitulate the null allele in terms of impeded inflammatory responses to demyelination. Utilizing the 5xFAD mouse model, we report age- and disease-dependent changes in Trem2R47H NSS mice in response to development of AD-like pathology. At an early (4-month-old) disease stage, hemizygous 5xFAD/homozygous Trem2R47H NSS (5xFAD/Trem2R47H NSS) mice have reduced size and number of microglia that display impaired interaction with plaques compared to microglia in age-matched 5xFAD hemizygous controls. This is associated with a suppressed inflammatory response but increased dystrophic neurites and axonal damage as measured by plasma neurofilament light chain (NfL) level. Homozygosity for Trem2R47H NSS suppressed LTP deficits and loss of presynaptic puncta caused by the 5xFAD transgene array in 4-month-old mice. At a more advanced (12-month-old) disease stage 5xFAD/Trem2R47H NSS mice no longer display impaired plaque-microglia interaction or suppressed inflammatory gene expression, although NfL levels remain elevated, and a unique interferon-related gene expression signature is seen. Twelve-month old Trem2R47H NSS mice also display LTP deficits and postsynaptic loss. CONCLUSIONS: The Trem2R47H NSS mouse is a valuable model that can be used to investigate age-dependent effects of the AD-risk R47H mutation on TREM2 and microglial function including its effects on plaque development, microglial-plaque interaction, production of a unique interferon signature and associated tissue damage.


Assuntos
Doença de Alzheimer , Doenças Desmielinizantes , Camundongos , Animais , Doença de Alzheimer/metabolismo , Cuprizona/metabolismo , Splicing de RNA , Mutação , Placa Amiloide/patologia , Modelos Animais de Doenças , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
6.
Acta Neuropathol Commun ; 10(1): 116, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978440

RESUMO

Multiple studies have recognized the involvement of the complement cascade during Alzheimer's disease pathogenesis. However, the specific role of C5a-C5aR1 signaling in the progression of this neurodegenerative disease is still not clear. Furthermore, its potential as a therapeutic target to treat AD still remains to be elucidated. Canonically, generation of the anaphylatoxin C5a as the result of complement activation and interaction with its receptor C5aR1 triggers a potent inflammatory response. Previously, genetic ablation of C5aR1 in a mouse model of Alzheimer's disease exerted a protective effect by preventing cognitive deficits. Here, using PMX205, a potent, specific C5aR1 antagonist, in the Tg2576 mouse model of Alzheimer's disease we show a striking reduction in dystrophic neurites in parallel with the reduced amyloid load, rescue of the excessive pre-synaptic loss associated with AD cognitive impairment and the polarization of microglial gene expression towards a DAM-like phenotype that are consistent with the neuroprotective effects seen. These data support the beneficial effect of a pharmacological inhibition of C5aR1 as a promising therapeutic approach to treat Alzheimer's disease. Supportive of the safety of this treatment is the recent FDA-approval of another other C5a receptor 1 antagonist, Avacopan, as a treatment for autoimmune inflammatory diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Microglia/patologia , Doenças Neurodegenerativas/metabolismo , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...