Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ophthalmol Sci ; 4(4): 100504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682030

RESUMO

Purpose: Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. Design: Experimental study. Subjects: Primary TMCs collected from human donors. Methods: Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. Main Outcome Measures: Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. Results: Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). Conclusions: We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

2.
Hum Mol Genet ; 33(9): 739-751, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38272457

RESUMO

INTRODUCTION: Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS: 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS: Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION: High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.


Assuntos
Glaucoma de Ângulo Aberto , Pressão Intraocular , Humanos , Pressão Intraocular/genética , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , Predisposição Genética para Doença , Tonometria Ocular , Proteína 2 Semelhante a Angiopoietina
3.
Wound Repair Regen ; 32(1): 90-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38155595

RESUMO

Various preclinical and clinical studies have demonstrated the robust wound healing capacity of the natural anticoagulant activated protein C (APC). A bioengineered APC variant designated 3K3A-APC retains APC's cytoprotective cell signalling actions with <10% anticoagulant activity. This study was aimed to provide preclinical evidence that 3K3A-APC is efficacious and safe as a wound healing agent. 3K3A-APC, like wild-type APC, demonstrated positive effects on proliferation of human skin cells (keratinocytes, endothelial cells and fibroblasts). Similarly it also increased matrix metollaproteinase-2 activation in keratinocytes and fibroblasts. Topical 3K3A-APC treatment at 10 or 30 µg both accelerated mouse wound healing when culled on Day 11. And at 10 µg, it was superior to APC and had half the dermal wound gape compared to control. Further testing was conducted in excisional porcine wounds due to their congruence to human skin. Here, 3K3A-APC advanced macroscopic healing in a dose-dependent manner (100, 250 and 500 µg) when culled on Day 21. This was histologically corroborated by greater collagen maturity, suggesting more advanced remodelling. A non-interference arm of this study found no evidence that topical 3K3A-APC caused either any significant systemic side-effects or any significant leakage into the circulation. However the female pigs exhibited transient and mild local reactions after treatments in week three, which did not impact healing. Overall these preclinical studies support the hypothesis that 3K3A-APC merits future human wound studies.


Assuntos
Células Endoteliais , Proteína C , Feminino , Humanos , Animais , Camundongos , Suínos , Proteína C/farmacologia , Proteína C/metabolismo , Proteína C/uso terapêutico , Células Endoteliais/metabolismo , Cicatrização , Fibrinolíticos/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico
4.
SLAS Technol ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37657710

RESUMO

Age-Related Macular Degeneration (AMD) is a highly prevalent form of retinal disease amongst Western communities over 50 years of age. A hallmark of AMD pathogenesis is the accumulation of drusen underneath the retinal pigment epithelium (RPE), a biological process also observable in vitro. The accumulation of drusen has been shown to predict the progression to advanced AMD, making accurate characterisation of drusen in vitro models valuable in disease modelling and drug development. More recently, deposits above the RPE in the subretinal space, called reticular pseudodrusen (RPD) have been recognized as a sub-phenotype of AMD. While in vitro imaging techniques allow for the immunostaining of drusen-like deposits, quantification of these deposits often requires slow, low throughput manual counting of images. This further lends itself to issues including sampling biases, while ignoring critical data parameters including volume and precise localization. To overcome these issues, we developed a semi-automated pipeline for quantifying the presence of drusen-like deposits in vitro, using RPE cultures derived from patient-specific induced pluripotent stem cells (iPSCs). Using high-throughput confocal microscopy, together with three-dimensional reconstruction, we developed an imaging and analysis pipeline that quantifies the number of drusen-like deposits, and accurately and reproducibly provides the location and composition of these deposits. Extending its utility, this pipeline can determine whether the drusen-like deposits locate to the apical or basal surface of RPE cells. Here, we validate the utility of this pipeline in the quantification of drusen-like deposits in six iPSCs lines derived from patients with AMD, following their differentiation into RPE cells. This pipeline provides a valuable tool for the in vitro modelling of AMD and other retinal disease, and is amenable to mid and high throughput screenings.

5.
Nat Commun ; 13(1): 4233, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882847

RESUMO

There are currently no treatments for geographic atrophy, the advanced form of age-related macular degeneration. Hence, innovative studies are needed to model this condition and prevent or delay its progression. Induced pluripotent stem cells generated from patients with geographic atrophy and healthy individuals were differentiated to retinal pigment epithelium. Integrating transcriptional profiles of 127,659 retinal pigment epithelium cells generated from 43 individuals with geographic atrophy and 36 controls with genotype data, we identify 445 expression quantitative trait loci in cis that are asssociated with disease status and specific to retinal pigment epithelium subpopulations. Transcriptomics and proteomics approaches identify molecular pathways significantly upregulated in geographic atrophy, including in mitochondrial functions, metabolic pathways and extracellular cellular matrix reorganization. Five significant protein quantitative trait loci that regulate protein expression in the retinal pigment epithelium and in geographic atrophy are identified - two of which share variants with cis- expression quantitative trait loci, including proteins involved in mitochondrial biology and neurodegeneration. Investigation of mitochondrial metabolism confirms mitochondrial dysfunction as a core constitutive difference of the retinal pigment epithelium from patients with geographic atrophy. This study uncovers important differences in retinal pigment epithelium homeostasis associated with geographic atrophy.


Assuntos
Atrofia Geográfica , Degeneração Macular , Humanos , Degeneração Macular/genética , Proteômica , Epitélio Pigmentado da Retina , Transcriptoma/genética
6.
Stem Cell Rev Rep ; 18(2): 718-731, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33725267

RESUMO

Apolipoprotein E (APOE) is the most important susceptibility gene for late onset of Alzheimer's disease (AD), with the presence of APOE-ε4 associated with increased risk of developing AD. Here, we reprogrammed human fibroblasts from individuals with different APOE-ε genotypes into induced pluripotent stem cells (iPSCs), and generated isogenic lines with different APOE profiles. Following characterisation of the newly established iPSC lines, we used an unguided/unpatterning differentiation method to generate six-month-old cerebral organoids from all iPSC lines to assess the suitability of this in vitro system to measure APOE, ß amyloid, and Tau phosphorylation levels. We identified variabilities in the organoids' cell composition between cell lines, and between batches of differentiation for each cell line. We observed more homogenous cerebral organoids, and similar levels of APOE, ß amyloid, and Tau when using the CRISPR-edited APOE isogenic lines, with the exception of one site of Tau phosphorylation which was higher in the APOE-ε4/ε4 organoids. These data describe that pathological hallmarks of AD are observed in cerebral organoids, and that their variation is mainly independent of the APOE-ε status of the cells, but associated with the high variability of cerebral organoid differentiation. It demonstrates that the cell-line-to-cell-line and batch-to-batch variabilities need to be considered when using cerebral organoids.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Humanos , Organoides/patologia , Fenótipo
7.
Cell Genom ; 2(6): 100142, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778138

RESUMO

To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with primary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and compared with those from healthy individuals. We performed single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures. Comparing the gene expression profile between cases and controls, we identified novel genetic associations for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to uncover context-specific profiles for a genetically complex disease.

8.
Genome Biol ; 22(1): 76, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673841

RESUMO

BACKGROUND: The discovery that somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) has provided a foundation for in vitro human disease modelling, drug development and population genetics studies. Gene expression plays a critical role in complex disease risk and therapeutic response. However, while the genetic background of reprogrammed cell lines has been shown to strongly influence gene expression, the effect has not been evaluated at the level of individual cells which would provide significant resolution. By integrating single cell RNA-sequencing (scRNA-seq) and population genetics, we apply a framework in which to evaluate cell type-specific effects of genetic variation on gene expression. RESULTS: Here, we perform scRNA-seq on 64,018 fibroblasts from 79 donors and map expression quantitative trait loci (eQTLs) at the level of individual cell types. We demonstrate that the majority of eQTLs detected in fibroblasts are specific to an individual cell subtype. To address if the allelic effects on gene expression are maintained following cell reprogramming, we generate scRNA-seq data in 19,967 iPSCs from 31 reprogramed donor lines. We again identify highly cell type-specific eQTLs in iPSCs and show that the eQTLs in fibroblasts almost entirely disappear during reprogramming. CONCLUSIONS: This work provides an atlas of how genetic variation influences gene expression across cell subtypes and provides evidence for patterns of genetic architecture that lead to cell type-specific eQTL effects.


Assuntos
Reprogramação Celular/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Locos de Características Quantitativas , RNA-Seq/métodos , Análise de Célula Única , Biologia Computacional/métodos , Fibroblastos/citologia , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Especificidade de Órgãos/genética , Análise de Célula Única/métodos
9.
Mitochondrion ; 54: 113-121, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32687992

RESUMO

Leber hereditary optic neuropathy (LHON) is one of the most common primary mitochondrial diseases. It is caused by point mutations in mitochondrial DNA (mtDNA) genes and in some cases, it can result in irreversible vision loss, primarily in young men. It is currently unknown why LHON mutations affect only some carriers and whether bioenergetic compensation enables unaffected carriers to overcome mitochondrial impairment and preserve cellular function. Here, we conducted bioenergetic metabolic assays and RNA sequencing to address this question using male-only, age-matched, m.11778G > A lymphoblasts and primary fibroblasts from both unaffected carriers and affected individuals. Our work indicates that OXPHOS bioenergetic compensation in LHON peripheral cells does not explain disease phenotype. We show that complex I impairment is similar in cells from unaffected carrier and affected patients, despite a transcriptional downregulation of metabolic pathways including glycolysis in affected cells relative to carriers detected by RNA sequencing. Although we did not detect OXPHOS bioenergetic compensation in carrier cells under basal conditions, our results indicate that cells from affected patients suffer a growth impairment under metabolic challenge compared to carrier cells, which were unaffected by metabolic challenge. If recapitulated in retinal ganglion cells, decreased susceptibility to metabolic challenge in unaffected carriers may help preserve metabolic homeostasis in the face of the mitochondrial complex I bioenergetic defect.


Assuntos
Complexo I de Transporte de Elétrons/genética , Perfilação da Expressão Gênica/métodos , Atrofia Óptica Hereditária de Leber/genética , Penetrância , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Células Cultivadas , DNA Mitocondrial/genética , Regulação para Baixo , Glicólise , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação Oxidativa , Mutação Puntual , Análise de Sequência de RNA
10.
Mol Vis ; 25: 174-182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30996586

RESUMO

Purpose: To evaluate the efficacy of using a CRISPR/Cas-mediated strategy to correct a common high-risk allele that is associated with age-related macular degeneration (AMD; rs1061170; NM_000186.3:c.1204T>C; NP_000177.2:p.His402Tyr) in the complement factor H (CFH) gene. Methods: A human embryonic kidney cell line (HEK293A) was engineered to contain the pathogenic risk variant for AMD (HEK293A-CFH). Several different base editor constructs (BE3, SaBE3, SaKKH-BE3, VQR-BE3, and Target-AID) and their respective single-guide RNA (sgRNA) expression cassettes targeting either the pathogenic risk variant allele in the CFH locus or the LacZ gene, as a negative control, were evaluated head-to-head for the incidence of a cytosine-to-thymine nucleotide correction. The base editor construct that showed appreciable editing activity was selected for further assessment in which the base-edited region was subjected to next-generation deep sequencing to quantify on-target and off-target editing efficacy. Results: The tandem use of the Target-AID base editor and its respective sgRNA demonstrated a base editing efficiency of facilitating a cytosine-to-thymine nucleotide correction in 21.5% of the total sequencing reads. Additionally, the incidence of insertions and deletions (indels) was detected in only 0.15% of the sequencing reads with virtually no off-target effects evident across the top 11 predicted off-target sites containing at least one cytosine in the activity window (n = 3, pooled amplicons). Conclusions: CRISPR-mediated base editing can be used to facilitate a permanent and stably inherited cytosine-to-thymine nucleotide correction of the rs1061170 SNP in the CFH gene with minimal off-target effects.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Citosina/metabolismo , Expressão Gênica , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Óperon Lac , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Mutação , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Timina/metabolismo
11.
Hum Gene Ther ; 30(1): 36-43, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29926763

RESUMO

The CRISPR/Cas system could provide an efficient and reliable means of editing the human genome and has the potential to revolutionize modern medicine; however, rapid developments are raising complex ethical issues. There has been significant scientific debate regarding the acceptability of some applications of CRISPR/Cas, with leaders in the field highlighting the need for the lay public's views to shape expert discussion. As such, we sought to determine the factors that influence public opinion on gene editing. We created a 17-item online survey translated into 11 languages and advertised worldwide. Topic modeling was used to analyze textual responses to determine what factors influenced respondents' opinions toward human somatic or embryonic gene editing, and how this varied among respondents with differing attitudes and demographic backgrounds. A total of 3,988 free-text responses were analyzed. Respondents had a mean age of 32 (range, 11-90) years, and 37% were female. The most prevalent topics cited were Future Generations, Research, Human Editing, Children, and Health. Respondents who disagreed with gene editing for health-related purposes were more likely to cite the topic Better Understanding than those who agreed to both somatic and embryonic gene editing. Respondents from Western backgrounds more frequently discussed Future Generations, compared with participants from Eastern countries. Religious respondents did not cite the topic Religious Beliefs more frequently than did nonreligious respondents, whereas Christian respondents were more likely to cite the topic Future Generations. Our results suggest that public resistance to human somatic or embryonic gene editing does not stem from an inherent mistrust of genome modification, but rather a desire for greater understanding. Furthermore, we demonstrate that factors influencing public opinion vary greatly amongst demographic groups. It is crucial that the determinants of public attitudes toward CRISPR/Cas be well understood so that the technology does not suffer the negative public sentiment seen with previous genetic biotechnologies.


Assuntos
Edição de Genes , Terapia Genética , Conhecimentos, Atitudes e Prática em Saúde , Opinião Pública , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Sistemas CRISPR-Cas , Criança , Feminino , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
12.
iScience ; 7: 30-39, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267684

RESUMO

We assessed the pluripotency of human induced pluripotent stem cells (iPSCs) maintained on an automated platform using StemFlex and TeSR-E8 media. Analysis of transcriptome of single cells revealed similar expression of core pluripotency genes, as well as genes associated with naive and primed states of pluripotency. Analysis of individual cells from four samples consisting of two different iPSC lines each grown in the two culture media revealed a shared subpopulation structure with three main subpopulations different in pluripotency states. By implementing a machine learning approach, we estimated that most cells within each subpopulation are very similar between all four samples. The single-cell RNA sequencing analysis of iPSC lines grown in both media reports the molecular signature in StemFlex medium and how it compares to that observed in the TeSR-E8 medium.

13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(7): 750-761, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660533

RESUMO

The human retina is a complex structure of organised layers of specialised cells that support the transmission of light signals to the visual cortex. The outermost layer of the retina, the retinal pigment epithelium (RPE), forms part of the blood retina barrier and is implicated in many retinal diseases. Lysophosphatidic acid (LPA) is a bioactive lipid exerting pleiotropic effects in various cell types, during development, normal physiology and disease. Its producing enzyme, AUTOTAXIN (ATX), is highly expressed by the pigmented epithelia of the human eye, including the RPE. Using human pluripotent stem cell (hPSC)-derived retinal cells, we interrogated the role of LPA in the human RPE and photoreceptors. hPSC-derived RPE cells express and synthesize functional ATX, which is predominantly secreted apically of the RPE, suggesting it acts in a paracrine manner to regulate photoreceptor function. In RPE cells, LPA regulates tight junctions, in a receptor-dependent mechanism, with an increase in OCCLUDIN and ZONULA OCCLUDENS (ZO)-1 expression at the cell membrane, accompanied by an increase in the transepithelial resistance of the epithelium. High concentration of LPA decreases phagocytosis of photoreceptor outer segments by the RPE. In hPSC-derived photoreceptors, LPA induces morphological rearrangements by modulating the actin myosin cytoskeleton, as evidenced by Myosin Light Chain l membrane relocation. Collectively, our data suggests an important role of LPA in the integrity and functionality of the healthy retina and blood retina barrier.


Assuntos
Barreira Hematorretiniana/fisiologia , Lisofosfolipídeos/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/metabolismo , Linhagem Celular , Citoesqueleto/metabolismo , Humanos , Fagocitose/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Células-Tronco Pluripotentes , Doenças Retinianas/cirurgia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/patologia , Junções Íntimas/metabolismo , Vitrectomia
14.
SLAS Technol ; 23(4): 315-325, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28574793

RESUMO

Pluripotent stem cells are an extremely powerful tool in modeling human diseases and hold much promise for personalized regenerative or cell replacement therapies. There is an increasing need for reproducible large-scale stem cell and differentiated progeny production, with minimal variation, rendering manual approaches impracticable. Here, we provide an overview of systems currently available for automated stem cell culture, and undertake a review of their capacities, capabilities, and relative limitations. With the merging of modern technology and stem cell biology, an increased demand and implementation of automated platforms for stem cell studies is anticipated.


Assuntos
Automação , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Terapia Baseada em Transplante de Células e Tecidos , Avaliação Pré-Clínica de Medicamentos , Humanos , Microfluídica
16.
Aging (Albany NY) ; 9(4): 1341-1350, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28455970

RESUMO

Cybrid technology was used to replace Leber hereditary optic neuropathy (LHON) causing mitochondrial DNA (mtDNA) mutations from patient-specific fibroblasts with wildtype mtDNA, and mutation-free induced pluripotent stem cells (iPSCs) were generated subsequently. Retinal ganglion cell (RGC) differentiation demonstrates increased cell death in LHON-RGCs and can be rescued in cybrid corrected RGCs.


Assuntos
DNA Mitocondrial/genética , Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas , Mitocôndrias/genética , Atrofia Óptica Hereditária de Leber/terapia , Transplante de Células-Tronco/métodos , Apoptose , Morte Celular , Diferenciação Celular , DNA Mitocondrial/metabolismo , DNA Mitocondrial/uso terapêutico , Humanos , Repetições de Microssatélites , Células Ganglionares da Retina/patologia , Superóxidos/metabolismo
17.
Sci Rep ; 7: 46330, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28406180

RESUMO

Epigenetic variation is implicated in a range of non-communicable diseases, including those of the eye. However, investigating the role of epigenetic variation in central tissues, such as eye or brain, remains problematic and peripheral tissues are often used as surrogates. In this study, matched human blood and eye tissue (n = 8) were obtained post-mortem and DNA methylation profiling performed on blood, neurosensory retina, retinal pigment epithelium (RPE)/choroid and optic nerve tissue using the Illumina Infinium HumanMethylation450 platform. Unsupervised clustering and principal components analysis revealed tissue of origin as the main driver of methylation variation. Despite this, there was a strong correlation of methylation profiles between tissues with >255,000 CpG sites found to have similar methylation levels. An additional ~16,000 show similarity across ocular tissues only. A small proportion of probes showing inter-individual variation in blood co-varied with eye tissues within individuals, however much of this variation may be genetically driven. An improved understanding of the epigenetic landscape of the eye will have important implications for understanding eye disease. Despite a generally high correlation irrespective of origin, tissue type is the major driver of methylation variation, with only limited covariation between blood and any specific ocular tissue.


Assuntos
Metilação de DNA , Epigênese Genética , Olho/metabolismo , Adulto , Idoso , Análise de Variância , Biologia Computacional/métodos , Ilhas de CpG , Ontologia Genética , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular
18.
SLAS Discov ; 22(8): 1016-1025, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28287872

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) have tremendous potential for development of regenerative medicine, disease modeling, and drug discovery. However, the processes of reprogramming, maintenance, and differentiation are labor intensive and subject to intertechnician variability. To address these issues, we established and optimized protocols to allow for the automated maintenance of reprogrammed somatic cells into iPSCs to enable the large-scale culture and passaging of human pluripotent stem cells (PSCs) using a customized TECAN Freedom EVO. Generation of iPSCs was performed offline by nucleofection followed by selection of TRA-1-60-positive cells using a Miltenyi MultiMACS24 Separator. Pluripotency markers were assessed to confirm pluripotency of the generated iPSCs. Passaging was performed using an enzyme-free dissociation method. Proof of concept of differentiation was obtained by differentiating human PSCs into cells of the retinal lineage. Key advantages of this automated approach are the ability to increase sample size, reduce variability during reprogramming or differentiation, and enable medium- to high-throughput analysis of human PSCs and derivatives. These techniques will become increasingly important with the emergence of clinical trials using stem cells.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Automação , Adesão Celular , Linhagem Celular , Reprogramação Celular , Fibroblastos/citologia , Humanos , Retina/citologia
19.
Int J Mol Sci ; 17(12)2016 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-27973441

RESUMO

Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research.


Assuntos
Inflamação/complicações , Inflamação/patologia , Ferimentos e Lesões/complicações , Ferimentos e Lesões/patologia , Doença Crônica , Humanos , Pele/patologia , Cicatrização , Ferimentos e Lesões/fisiopatologia , Ferimentos e Lesões/terapia
20.
Cell Stem Cell ; 18(5): 569-72, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27152441

RESUMO

Ongoing breakthroughs with CRISPR/Cas-based editing could potentially revolutionize modern medicine, but there are many questions to resolve about the ethical implications for its therapeutic application. We conducted a worldwide online survey of over 12,000 people recruited via social media to gauge attitudes toward this technology and discuss our findings here.


Assuntos
Atitude , Edição de Genes , Genoma Humano , Internacionalidade , Mídias Sociais , Inquéritos e Questionários , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...