Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745162

RESUMO

Obesity is an important public health problem nowadays. Long-term obesity can trigger a series of chronic diseases and impair the learning and memory function of the brain. Current studies show that scientific exercise can effectively improve learning and memory capacity, which also can provide benefits for obese people. However, the underlying mechanisms for the improvement of cognitive capacity under the status of obesity still need to be further explored. In the present study, the obesity-induced cognition-declined model was established using 4-week-old mice continuously fed with a high-fat diet (HFD) for 12 weeks, and then the model mice were subjected to an 8-week swimming intervention and corresponding evaluation of relevant indicators, including cognitive capacity, inflammation, insulin signal pathway, brain-derived neurotrophic factor (BNDF), and apoptosis, for exploring potential regulatory mechanisms. Compared with the mice fed with regular diets, the obese mice revealed the impairment of cognitive capacity; in contrast, swimming intervention ameliorated the decline in cognitive capacity of obese mice by reducing inflammatory factors, inhibiting the JNK/IRS-1/PI3K/Akt signal pathway, and activating the PGC-1α/BDNF signal pathway, thereby suppressing the apoptosis of neurons. Therefore, swimming may be an important interventional strategy to compensate for obesity-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Resistência à Insulina , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Natação
2.
Sheng Li Xue Bao ; 72(5): 667-676, 2020 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-33106837

RESUMO

Sarcopenia is an age-related degenerative disease, in which skeletal muscle mass and function are reduced during aging process. Physical intervention is one of the most effective strategies available for the treatment of sarcopenia. Studies have shown that microRNAs (miRNAs), as important regulators of gene expression, play an important role in maintaining the homeostasis of senescent skeletal muscle cells by regulating skeletal muscle cell development (proliferation and differentiation), mitochondrial biogenesis, protein synthesis and degradation, inflammatory response and metabolic pathways. Furthermore, exercise can combat age-related changes in muscle mass, composition and function, which is associated with the changes in the expression and biological functions of miRNAs in skeletal muscle cells. In this article, we systematically review the regulatory mechanisms of miRNAs in skeletal muscle aging, and discuss the regulatory roles and molecular targets of exercise-mediated miRNAs in muscular atrophy during aging process, which may provide novel insights into the prevention and treatment of sarcopenia.


Assuntos
MicroRNAs , Sarcopenia , Envelhecimento/genética , Terapia por Exercício , Humanos , MicroRNAs/genética , Músculo Esquelético , Sarcopenia/genética , Sarcopenia/terapia
3.
Sci Total Environ ; 716: 137120, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32059321

RESUMO

LiAl hydrotalcite-like compound (LiAl HTlc) was synthesized via a hydrothermal method and used to adsorb Cu2+ and Zn2+ for investigating the adsorption characteristics of heavy metal cations. The X-Raydiffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and transmission electron microscopy (TEM) characterizations revealed the interconnecting flower-like layered structure of LiAl HTlc. The adsorption kinetics and isotherms of Cu2+ and Zn2+ on LiAl HTlc agreed with the pseudo-second-order model and the Langmuir model at a given sorbent concentration (Cs), respectively. The Cs-effect on the adsorption kinetics and isotherms was observed, and the Langmuir-surface component activity (SCA) equation could be utilized to characterize the effect of Cs in the adsorption isotherms. The adsorption process was spontaneous and endothermic. The adsorption mechanism denoted that the adsorption process was controlled using two main mechanisms, i.e., surface complexation and isomorphic substitution. This is the first report, to the best of our knowledge, on the usage of LiAl HTlc for the removal of heavy metal cations Cu2+ and Zn2+ from a solution. LiAl HTlc is a promising sorbent for treating water containing heavy metal cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...