Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10132-10139, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37909501

RESUMO

Nanomotors in solution have many potential applications. However, it has been a significant challenge to realize the directional motion of nanomotors. Here, we report cadmium chloride tetrahydrate (CdCl2·4H2O) nanomotors with remarkable directional movement under electron beam irradiation. Using in situ liquid phase transmission electron microscopy, we show that the CdCl2·4H2O nanoparticle with asymmetric surface facets moves through the liquid with the flat end in the direction of motion. As the nanomotor morphology changes, the speed of movement also changes. Finite element simulation of the electric field and fluid velocity distribution around the nanomotor assists the understanding of ionic self-diffusiophoresis as a driving force for the nanomotor movement; the nanomotor generates its own local ion concentration gradient due to different chemical reactivities on different facets.

2.
ACS Appl Mater Interfaces ; 15(40): 47649-47660, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782678

RESUMO

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36728152

RESUMO

Achieving control over the motion of dissolved particles in liquid metals is of importance for the meticulous realization of hierarchical particle assemblies in a variety of nanofabrication processes. Brownian forces can impede the motion of such particles, impacting the degree of perfection that can be realized in assembled structures. Here, we show that light-induced Marangoni flow in liquid metals (i.e., liquid-gallium) with Laguerre-Gaussian (LGpl) lasers as heating sources is an effective approach to overcome Brownian forces on particles, giving rise to predictable assemblies with a high degree of order. We show that by carefully engineering surface tension gradients in liquid-gallium using non-Gaussian LGpl lasers, the Marangoni and convective flow that develops in the fluid drives the trajectory of randomly dispersed particles to assemble into 100 µm wide ring-shaped particle assemblies. Careful control over the parameters of the LGpl laser (i.e., laser mode, spot size, and intensity of the electric field) can tune the temperature and fluid dynamics of the liquid-gallium as well as the balance of forces on the particle. This in turn can tune the structure of the ring-shaped particle assembly with a high degree of fidelity. The use of light to control the motion of particles in liquid metals represents a tunable and rapidly reconfigurable approach to spatially design surface tension gradients in fluids for more complex assembly of particles and small-scale solutes. This work can be extended to a variety of liquid metals, complementary to what has been realized in particle assembly out of ferrofluids using magnetic fields.

4.
Bioresour Technol ; 264: 116-122, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29800771

RESUMO

Nitrogen loss through gaseous emission, mainly ammonia emission, was an inevitable problem during sewage sludge composting. In this study, MgSO4 + K3PO4 (Run A), K2SO4 + KH2PO4-K2HPO4 (Run B) and MgSO4 + KH2PO4-K2HPO4 (Run C) were mixed with mixtures before composting, aiming at researching the effects of buffer solution on reducing nitrogen loss during composting. Ammonia loss of Run C was reduced by 53.8% and 45.5%, and nitrogen loss of Run C was decreased by 61.2% and 67.1%, compared to that of Run A and Run B, respectively. Besides, organic matter degradation of Run C was 36.8%. Among the three amended treatments, nitrogen loss in Run C was effectively reduced and organic matter degradation was slightly improved. The addition of MgSO4 and KH2PO4-K2HPO4 was confirmed to be effective to maintain a desired pH range for struvite precipitation as well as to reserve more ammonia in the compost to promote the formation of struvite.


Assuntos
Compostagem , Nitrogênio/análise , Esgotos , Fosfatos , Compostos de Potássio , Solo
5.
Bioresour Technol ; 244(Pt 1): 672-678, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28818795

RESUMO

This study investigated the effect of ferric nitrate on mitigating the inhibition of volatile fatty acids (VFAs) during the initial phase of sewage sludge composting amended with rice bran. During the 34-day lab-scale composting, the supplementation of ferric nitrate enhanced the degradation of VFAs by up to 3 times as compared to the control. The organic matters loss (OML) rate in the treatment reactor was almost doubled with supplementation of ferric nitrate as compared to the control reactor during the initial phase. Eventually the treatment reactor achieved a 39.0% OML by the end of composting, which was 22% higher than the control. Ferric nitration addition mitigated the inhibition of VFAs by stimulating denitrification which consumed protons and VFAs. Ferric nitrate addition also decreased the electrical conductivity by 23% in the final compost product, reducing the possibility of phytotoxicity issue upon soil application. In summary, the results demonstrated that ferric nitrate addition could be an effective strategy for enhanced sludge composting.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Compostos Férricos , Nitratos , Oryza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...