Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 829: 146501, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35452709

RESUMO

Aging is a complex life process that human organs and tissues steadily and continuously decline. Aging has huge heterogeneity, which shows different aging rates among different individuals and in different tissues of the same individual. Many studies of aging are often contradictory and show little common signature. The integrated analysis of these transcriptome datasets will provide an unbiased global view of the aging process. Here, we integrated 8 transcriptome datasets including 757 samples from healthy human blood to study aging from three aspects of gene expression, mutations, and alternative splicing. Surprisingly, we found that transcriptome changes in blood are relatively independent of the chronological age. Further pseudotime analysis revealed two different aging paths (AgingPath1 and AgingPath2) in human blood. The differentially expressed genes (DEGs) along the two paths showed a limited overlap and are enriched in different biological processes. The mutations of DEGs in AgingPath1 are significantly increased in the aging process, while the opposite trend was observed in AgingPath2. Expression quantitative trait loci (eQTL) and splicing quantitative trait loci (sQTL) analysis identified 304 important mutations that can affect both gene expression and alternative splicing during aging. Finally, by comparison between aging and Alzheimer's disease, we identified 37 common DEGs in AgingPath1, AgingPath2 and Alzheimer's disease. These genes may contribute to the shift from aging state to Alzheimer's disease. In summary, this study revealed the two aging paths and the related genes and mutations, which provides a new insight into aging and aging-related disease.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Humanos , Mutação , Transcriptoma
2.
Aging (Albany NY) ; 14(3): 1448-1472, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150482

RESUMO

Bacterial infection is one of the most important factors affecting the human life span. Elderly people are more harmed by bacterial infections due to their deficits in immunity. Because of the lack of new antibiotics in recent years, bacterial resistance has increasingly become a serious problem globally. In this study, an antibacterial compound predictor was constructed using the support vector machines and random forest methods and the data of the active and inactive antibacterial compounds from the ChEMBL database. The results showed that both models have excellent prediction performance (mean accuracy >0.9 and mean AUC >0.9 for the two models). We used the predictor to screen potential antibacterial compounds from FDA-approved drugs in the DrugBank database. The screening results showed that 1087 small-molecule drugs have potential antibacterial activity and 154 of them are FDA-approved antibacterial drugs, which accounts for 76.2% of the approved antibacterial drugs collected in this study. Through molecular fingerprint similarity analysis and common substructure analysis, we screened 8 predicted antibacterial small-molecule compounds with novel structures compared with known antibacterial drugs, and 5 of them are widely used in the treatment of various tumors. This study provides a new insight for predicting antibacterial compounds by using approved drugs, the predicted compounds might be used to treat bacterial infections and extend lifespan.


Assuntos
Antibacterianos , Aprendizado de Máquina , Idoso , Antibacterianos/farmacologia , Humanos , Máquina de Vetores de Suporte
3.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615401

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, is spreading rapidly and has caused hundreds of millions of infections and millions of deaths worldwide. Due to the lack of specific vaccines and effective treatments for COVID-19, there is an urgent need to identify effective drugs. Traditional Chinese medicine (TCM) is a valuable resource for identifying novel anti-SARS-CoV-2 drugs based on the important contribution of TCM and its potential benefits in COVID-19 treatment. Herein, we aimed to discover novel anti-SARS-CoV-2 compounds and medicinal plants from TCM by establishing a prediction method of anti-SARS-CoV-2 activity using machine learning methods. We first constructed a benchmark dataset from anti-SARS-CoV-2 bioactivity data collected from the ChEMBL database. Then, we established random forest (RF) and support vector machine (SVM) models that both achieved satisfactory predictive performance with AUC values of 0.90. By using this method, a total of 1011 active anti-SARS-CoV-2 compounds were predicted from the TCMSP database. Among these compounds, six compounds with highly potent activity were confirmed in the anti-SARS-CoV-2 experiments. The molecular fingerprint similarity analysis revealed that only 24 of the 1011 compounds have high similarity to the FDA-approved antiviral drugs, indicating that most of the compounds were structurally novel. Based on the predicted anti-SARS-CoV-2 compounds, we identified 74 anti-SARS-CoV-2 medicinal plants through enrichment analysis. The 74 plants are widely distributed in 68 genera and 43 families, 14 of which belong to antipyretic detoxicate plants. In summary, this study provided several medicinal plants with potential anti-SARS-CoV-2 activity, which offer an attractive starting point and a broader scope to mine for potentially novel anti-SARS-CoV-2 drugs.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , SARS-CoV-2 , Quimioinformática , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA