Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38891634

RESUMO

Upon encountering a virus, fish initiate an innate immune response, guided by IFNs. Foxo3 plays a part in the body's immune response; however, its specific role in the IFN-guided immune response in fish is yet to be clarified. In this study, we characterized foxo3 in Japanese medaka (Oryzias latipes) and examined its role in the IFN-dependent immune response upon infection with the RGNNV. The results show that the coding region of the medaka foxo3 gene is 2007 base pairs long, encoding 668 amino acids, and possesses a typical forkhead protein family structural domain. The product of this gene shares high homology with foxo3 in other fish species and is widely expressed, especially in the brain, eyes, testes, and heart. Upon RGNNV infection, foxo3-/- mutant larvae showed a lower mortality rate, and adults exhibited a significant reduction in virus replication. Moreover, the absence of foxo3 expression led to an increase in the expression of irf3, and a decrease in the expression of other IFN-related genes such as tbk1 and mapk9, implying that foxo3 may function as a negative regulator in the antiviral signaling pathway. These findings provide crucial insights for disease-resistant breeding in the aquaculture industry.

2.
Biochim Biophys Acta Gen Subj ; 1868(9): 130664, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942152

RESUMO

BACKGROUND: Chinese medaka (Oryzias sinensis) is widely distributed in freshwater rivers in China. Similar to the medaka (Oryzias latipes), Chinese medaka has the characteristics of small size, rapid reproductive cycle, and strong adaptability, which makes it suitable as a model organism for studies in basic biology and environmental toxicology. Chinese medaka exhibits distinct sexual dimorphism. However, due to the lack of complete genomic information, the regulation of sex determination and differentiation-related genes in Chinese medaka remains unclear. METHODS: Chinese medaka dmrt1 (Osdmrt1) was cloned by PCR, and transgenic individuals of medaka [Tg(CMV:Osdmrt1)] overexpressing Osdmrt1 were generated to investigate the role of Osdmrt1 in sex determination. Western blot was used to validate the integration of the Osdmrt1 into the medaka genome. Tissue sectioning and HE staining were used to identify Tg(CMV:Osdmrt1) physiological gender and phenotype. qRT-PCR was used to analyze the expression of gonad-specific genes. RESULTS: Osdmrt1 was cloned and identified, and it shared similar evolutionary relationships with medaka dmrt1. Tg(CMV:Osdmrt1) exhibited partial sex reversal from female to male in the F2 generation, with genetically female individuals developing testes and producing functional sperm. Additionally, the secondary sexual characteristics of the transgenic females also changed to males. CONCLUSION: The Chinese medaka dmrt1 gene could convert females to males in medaka. GENERAL SIGNIFICANCE: These results not only elucidate the function of Chinese medaka dmrt1, but also accumulate knowledge for studying the function of economically important fish genes in model fish by transgenic technology.

3.
Cell Death Dis ; 15(5): 325, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724499

RESUMO

Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.


Assuntos
Carcinoma Hepatocelular , Colesterol , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Esterol O-Aciltransferase , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Humanos , Colesterol/metabolismo , Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/genética , Animais , Camundongos , Masculino , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular , Feminino , Camundongos Endogâmicos BALB C , Sesquiterpenos/farmacologia , Regulação Neoplásica da Expressão Gênica
4.
Ecotoxicol Environ Saf ; 279: 116497, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805827

RESUMO

Methamphetamine (METH) is a highly abused substance on a global scale and has the capacity to elicit toxicity within the central nervous system. The neurotoxicity induced by METH encompasses neuronal degeneration and cellular demise within the substantia nigra-striatum and hippocampus. Caffeic acid phenethyl ester (CAPE), a constituent of propolis, is a diminutive compound that demonstrates antioxidative and anti-inflammatory characteristics. Numerous investigations have demonstrated the safeguarding effects of CAPE in various neurodegenerative ailments. Our hypothesis posits that CAPE may exert a neuroprotective influence on METH-induced neurotoxicity via specific mechanisms. In order to validate the hypothesis, a series of experimental techniques including behavioral tests, immunofluorescence labeling, RNA sequencing, and western blotting were employed to investigate the neurotoxic effects of METH and the potential protective effects of CAPE. The results of our study demonstrate that CAPE effectively ameliorates cognitive memory deficits and anxiety symptoms induced by METH in mice. Furthermore, CAPE has been observed to attenuate the upregulation of neurotoxicity-associated proteins that are induced by METH exposure and also reduced the loss of hippocampal neurons in mice. Moreover, transcriptomics analysis was conducted to determine alterations in gene expression within the hippocampus of mice. Subsequently, bioinformatics analysis was employed to investigate the divergent outcomes and identify potential key genes. Interferon-stimulated gene 15 (ISG15) was successfully identified and confirmed through RT-qPCR, western blotting, and immunofluorescence techniques. Our research findings unequivocally demonstrated the neuroprotective effect of CAPE against METH-induced neurotoxicity, with ISG15 may have an important role in the underlying protective mechanism. These results offer novel perspectives on the treatment of METH-induced neurotoxicity.


Assuntos
Ácidos Cafeicos , Metanfetamina , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Álcool Feniletílico , Animais , Ácidos Cafeicos/farmacologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos , Masculino , Síndromes Neurotóxicas/prevenção & controle , Síndromes Neurotóxicas/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos
5.
Mol Nutr Food Res ; 68(2): e2300051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010348

RESUMO

SCOPE: Ulcerative colitis (UC) is a classic inflammatory bowel disease (IBD) that represents a serious threat to human health. As a natural flavonoid with multiple biological activities, quercetin (QCT) suffers from low bioavailability through limitations in chemical stability. Here, the study investigates the regulatory effects of quercetin nanoparticles (QCT NPs) on dextran sulfate sodium (DSS) induced colitis mice. METHODS AND RESULTS: Chitosan is modified to obtain N-succinyl chitosan (NSC) with superior water solubility. Nanoparticles composed of sodium alginate (SA) and NSC can encapsulate QCT after cross-linking, forming QCT NPs. In vitro drug release assays demonstrate the pH sensitivity of QCT NPs. Compared with free quercetin, QCT NPs have better therapeutic efficacy in modulating gut microbiota and its metabolites short chain fatty acid (SCFAs) to relieve DSS-induced colitis in mice, thereby alleviating colon inflammatory infiltration, increasing goblet cells density and mucus protein, ameliorating TNF-α, IL-1ß, IL-6, IL-10, and Myeloperoxidase (MPO) levels, and recovering intestinal barrier integrity. CONCLUSION: pH sensitive QCT nanoparticles can reduce inflammatory reaction, improve gut microbiota, and repair intestinal barrier by targeting colon, thus improving DSS induced colitis in mice, providing reference for the treatment of colitis.


Assuntos
Colite Ulcerativa , Colite , Nanopartículas , Humanos , Animais , Camundongos , Quercetina/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo/metabolismo , Concentração de Íons de Hidrogênio , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
Int J Biol Macromol ; 247: 125734, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37423436

RESUMO

Molecular dissection of disease resistance against Vibrio harveyi infection in yellow drum at the genome-wide level uncovered a C-type lectin-like receptor cluster of differentiation CD302 (named as YdCD302) in our previous study. Here, the gene expression pattern of YdCD302 and its function in mediating the defense response to V. harveyi attack were investigated. Gene expression analysis demonstrated that YdCD302 was ubiquitously distributed in various tissues with the highest transcript abundance in liver. The YdCD302 protein exhibited agglutination and antibacterial activity against V. harveyi cells. Binding assay indicated that YdCD302 can physically interact with V. harveyi cells in a Ca2+-independent manner, and the interaction can activate reactive oxygen species (ROS) production in the bacterial cells to induce RecA/LexA-mediated cell death. After infection with V. harveyi, the expression of YdCD302 can be up-regulated significantly in the main immune organs of yellow drum and potentially further trigger the cytokines involved innate immunity. These findings provide insight into the genetic basis of the disease resistance trait in yellow drum and shed light on the functioning of the CD302 C-type lectin-like receptor in host-pathogen interactions. The molecular and functional characterization of YdCD302 is a significant step towards a better understanding of disease resistance mechanisms and the development of new strategies for disease control.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Lectinas Tipo C , Perciformes , Vibrioses , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Animais , Vibrio/fisiologia , Vibrioses/imunologia , Vibrioses/metabolismo , Vibrioses/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Sequência de Bases , Interações Hospedeiro-Patógeno , Imunidade Inata
7.
Cells ; 12(4)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831280

RESUMO

The placenta plays a crucial role in mammalian fetal growth. The most important cell type in the placenta is the trophoblast cell. Many genes have been reported to play important functions in the differentiation of early placental trophoblast cells. Weighted gene co-expression network analysis (WGCNA) is a systematic biological method for describing the correlation patterns among genes across microarray samples. We used WGCNA to screen placental trophoblast development-related genes, and through experimental confirmation, we showed that, among these genes, ELAC2 may play an important regulatory role in the early development of mammalian placental formation. ELAC2 regulates early placental trophoblast differentiation by affecting cell migration and cell proliferation. In addition, ELAC2 may be involved in regulating cell migration processes in a manner that affects epithelial mesenchymal transition (EMT).


Assuntos
Placenta , Trofoblastos , Animais , Gravidez , Feminino , Placenta/metabolismo , Trofoblastos/metabolismo , Placentação , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Mamíferos/genética
8.
Chaos ; 32(11): 111102, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36456327

RESUMO

Change point detection (CPD) for multi-agent systems helps one to evaluate the state and better control the system. Multivariate CPD methods solve the d × T time series well; however, the multi-agent systems often produce the N × d × T dimensional data, where d is the dimension of multivariate observations, T is the total observation time, and N is the number of agents. In this paper, we propose two valid approaches based on higher-order features, namely, the Betti number feature extraction and the Persistence feature extraction, to compress the d-dimensional features into one dimension so that general CPD methods can be applied to higher-dimensional data. First, a topological structure based on the Vietoris-Rips complex is constructed on each time-slice snapshot. Then, the Betti number and persistence of the topological structures are obtained to separately constitute two feature matrices for change point estimates. Higher-order features primarily describe the data distribution on each snapshot and are, therefore, independent of the node correspondence cross snapshots, which gives our methods unique advantages in processing missing data. Experiments in multi-agent systems demonstrate the significant performance of our methods. We believe that our methods not only provide a new tool for dimensionality reduction and missing data in multi-agent systems but also have the potential to be applied to a wider range of fields, such as complex networks.

9.
Chaos ; 32(10): 101103, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36319304

RESUMO

The interaction between the swarm individuals affects the dynamic behavior of the swarm, but it is difficult to obtain directly from outside observation. Therefore, the problem we focus on is inferring the structure of the interactions in the swarm from the individual behavior trajectories. Similar inference problems that existed in network science are named network reconstruction or network inference. It is a fundamental problem pervading research on complex systems. In this paper, a new method, called Motion Trajectory Similarity, is developed for inferring direct interactions from the motion state of individuals in the swarm. It constructs correlations by combining the similarity of the motion trajectories of each cross section of the time series, in which individuals with highly similar motion states are more likely to interact with each other. Experiments on the flocking systems demonstrate that our method can produce a reliable interaction inference and outperform traditional network inference methods. It can withstand a high level of noise and time delay introduced into flocking models, as well as parameter variation in the flocking system, to achieve robust reconstruction. The proposed method provides a new perspective for inferring the interaction structure of a swarm, which helps us to explore the mechanisms of collective movement in swarms and paves the way for developing the flocking models that can be quantified and predicted.


Assuntos
Movimento (Física) , Humanos
10.
Front Nutr ; 9: 1062961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590200

RESUMO

Introduction: Ulcerative colitis (UC), a chronic non-specific colorectal inflammatory disease with unclear etiology, has long plagued human health. Gut microbiota dysbiosis destroy homeostasis of the colon, which is closely related to ulcerative colitis progress. Apigenin, a flavonoid widely present in celery, has been found to improve ulcerative colitis. However, the potential molecular mechanism of apigenin ameliorating ulcerative colitis through protecting intestinal barrier and regulating gut microbiota remains undefined. Methods: Dextran sodium sulfate (DSS)-induced colitis mouse model was conducted to evaluate the effect of apigenin on UC. Disease activity index score of mice, colon tissue pathological, cytokines analysis, intestinal tight junction proteins expression, and colonic content short-chain fatty acids (SCFAs) and 16S rRNA gene sequencing were conducted to reflect the protection of apigenin on UC. Results: The results indicated that apigenin significantly relieved the intestinal pathological injury, increased goblet cells quantity and mucin secretion, promoted anti-inflammatory cytokines IL-10 expression, and inhibited the expression of proinflammatory cytokines, TNF-α, IL-1ß, IL-6 and MPO activity of colon tissue. Apigenin increased ZO-1, claudin-1 and occludin expressions to restore the integrity of the intestinal barrier. Moreover, apigenin remodeled the disordered gut microbiota by regulating the abundance of Akkermansia, Turicibacter, Klebsiella, Romboutsia, etc., and its metabolites (SCFAs), attenuating DSS-induced colon injury. We also investigated the effect of apigenin supplementation on potential metabolic pathways of gut microbiota. Conclusion: Apigenin effectively ameliorated DSS-induced UC via balancing gut microbiome to inhibit inflammation and protect gut barrier. With low toxicity and high efficiency, apigenin might serve as a potential therapeutic strategy for the treatment of UC via regulating the interaction and mechanism between host and microorganism.

11.
Mol Ther Nucleic Acids ; 26: 760-772, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34729246

RESUMO

Communication between the maternal uterus and the embryo is vital for a successful pregnancy. Exosomes, subtypes of extracellular vesicles comprising many bioactive factors, regulate the early stages of pregnancy, specifically during embryo implantation. Nevertheless, the mechanism by which exosomal microRNAs (miRNAs) derived from placental trophoblasts regulate embryo implantation remains elusive. We isolated and identified exosomes derived from placental trophoblast cells (HTR8/SVneo). Subsequently, we evaluated the loading miRNA in exosomes by small RNA sequencing. Consequently, we showed that trophoblast cell-derived exosomes could transfer to endometrial epithelial cells. Besides, these exosomes promoted the epithelial-mesenchymal transition (EMT) as well as migration of endometrial cells and were implicated in the regulation of inflammation. Further, the specific miRNAs were screened in exosomes, and as a result, miRNA (miR)-1290 was enriched specifically in exosomes. miR-1290 promoted the expression of inflammatory factors (interleukin [IL]-6 and IL-8) and migration of endometrial epithelial cells. In addition, exosomal miR-1290 promoted angiogenesis in vitro. More importantly, by targeting LHX6, trophoblast HTR8/SVneo cell-derived exosomal miR-1290 promoted the EMT process of endometrial epithelial cell HEC-1-A. Altogether, our findings provide novel insights into the mechanism of trophoblast cell-derived exosomes during embryo implantation.

12.
Reprod Biol Endocrinol ; 19(1): 2, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33407571

RESUMO

BACKGROUND: The establishment of uterine receptivity is essential for embryo implantation initiation and involves a significant morphological transformation in the endometrial epithelial cells (EECs). The remodeling of junctional complexes and membrane-associated cytoskeleton is crucial for epithelial transformation. However, little is known about how this process is regulated in EECs during the receptive phase. ARHGAP19 is a Rho GTPase-activating protein that participates in various cytoskeletal-related events, including epithelial morphogenesis. Here, we investigated the role of ARHGAP19 in endometrial epithelial transformation during the establishment of uterine receptivity. The upstream regulator of ARHGAP19 was also investigated. METHODS: ARHGAP19 expression was examined in mouse uteri during early pregnancy and in human EEC lines. The role of ARHGAP19 was investigated by manipulating its expression in EECs. The effect of ARHGAP19 on junctional proteins in EECs was examined by western blotting and immunofluorescence. The effect of ARHGAP19 on microvilli was examined by scanning electron microscopy. The upstream microRNA (miRNA) was predicted using online databases and validated by the dual-luciferase assay. The in vivo and in vitro effect of miRNA on endogenous ARHGAP19 was examined by uterine injection of miRNA agomirs and transfection of miRNA mimics or inhibitors. RESULTS: ARHGAP19 was upregulated in the receptive mouse uteri and human EECs. Overexpression of ARHGAP19 in non-receptive EECs downregulated the expression of junctional proteins and resulted in their redistribution. Meanwhile, upregulating ARHGAP19 reorganized the cytoskeletal structure of EECs, leading to a decline of microvilli and changes in cell configuration. These changes weakened epithelial cell polarity and promoted the transition of non-receptive EECs to a receptive phenotype. Besides, miR-192-5p, a miRNA that plays a key role in maintaining epithelial properties, was validated as an upstream regulator of ARHGAP19. CONCLUSION: These results suggested that ARHGAP19 may contribute to the transition of EECs from a non-receptive to a receptive state by regulating the remodeling of junctional proteins and membrane-associated cytoskeleton.


Assuntos
Endométrio/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Útero/metabolismo , Animais , Sequência de Bases , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos ICR , MicroRNAs/genética , Gravidez , Homologia de Sequência do Ácido Nucleico
13.
Mol Ther Nucleic Acids ; 23: 217-231, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33376629

RESUMO

Communication between maternal uterus and blastocyst occurs in the early stages of pregnancy, and the interaction influences the success of embryo implantation. Whereas small extracellular vesicles (sEVs) play an essential role in mediating intercellular communication in numerous biological processes, their role in embryo implantation during the window of implantation (WOI) remains poorly defined. Here, we report that endometrial epithelial cells (EECs) secrete sEVs during early pregnancy, which affects the trophoblast behaviors (migration, invasion, and proliferation), thus influencing embryo implantation. We show that microRNA (miR)-100-5p, sEVs containing microRNA (miRNA), activates both focal adhesion kinase (FAK) and c-Jun N-terminal kinase (JNK), as well as contributes to trophoblast migration and invasion. Furthermore, our findings indicate that the sEV miR-100-5p promotes angiogenesis during the implantation process. In conclusion, this study reveals a novel mechanism by which EEC-derived sEV miR-100-5p crosstalks with trophoblasts, leading to an enhanced ability for implantation.

14.
Theriogenology ; 158: 218-226, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32980684

RESUMO

Embryo implantation plays a decisive role in pregnancy. While in the process of implantation, microRNA (miRNA) is an important regulatory factor in the post transcriptional level. However, the role of many miRNAs in embryo implantation remained unknown. In this study, microRNA-183 (miR-183) was found differentially expressed in mouse uterus during implantation. In vivo treatment of miR-183 agomir in the uterine horn before implantation could eliminate the number of implantation site. The localization of miR-183 in mouse uteri gradually changed from epithelial to stromal layer in early pregnancy. Mice implantation models demonstrated that the decrease of miR-183 was mainly caused by maternal factors. Loss and gain function of miR-183 in endometrial cell lines showed that miR-183 could inhibit cell migration, invasion and apoptosis. MiR-183 could inhibit embryo implantation by binding Heparin-Binding EGF-like growth factor (Hbegf) and Laminin gamma one (Lamc1), which were key genes in embryo apposition and penetration. All these evidences indicate that miR-183 plays an important role during embryo implantation. This study provides new insights into the functions of miR-183 during embryo implantation and the development of contraceptive drugs in early pregnancy.


Assuntos
Implantação do Embrião , MicroRNAs , Animais , Endométrio , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Camundongos , MicroRNAs/genética , Gravidez , Útero
15.
Theriogenology ; 157: 360-371, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32861000

RESUMO

The establishment of uterine receptivity is a prerequisite for embryo implantation and begins with the transformation of the luminal epithelium. MicroRNAs (miRNAs) have been widely reported to be involved in the regulation of embryo implantation, but their roles in establishing uterine receptivity remain unclear. In this study, through small RNA sequencing analysis, we showed that a low level of miR-192-5p is essential for initiating implantation in mice, and transient upregulation of miR-192-5p led to implantation failure. In situ hybridization results revealed that miR-192-5p was primarily expressed in the endometrial epithelium, and dysregulation of miR-192-5p interfered with the performance of the luminal epithelium, resulting in inadequate receptivity. By manipulating miR-192-5p expression in mouse uterus and an endometrial epithelial cell line, we showed that miR-192-5p maintains cell polarity through stabilizing adherens junction protein E-cadherin, thereby preventing epithelial-mesenchymal transition. Furthermore, miR-192-5p preserved the pattern of microvilli as well as Muc1 expression on the apical membrane of epithelial cells, thereby avoiding embryo adhesion. Moreover, miR-192-5p was found to be regulated by ovarian steroids. Collectively, this study demonstrated that the physiological role of miR-192-5p in mouse uterus is to maintain the nonreceptive state of epithelial cells and prevent their transformation to the receptive state. Thus, a sustained high level of miR-192-5p is detrimental to embryo implantation. These findings help elucidate the mechanisms involved in miRNA-based regulation of uterine physiology in early pregnancy, and may even contribute to the diagnosis and treatment of infertility.


Assuntos
Implantação do Embrião , MicroRNAs , Animais , Endométrio , Células Epiteliais , Feminino , Camundongos , MicroRNAs/genética , Gravidez , Útero
16.
Sci Rep ; 10(1): 9862, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32555395

RESUMO

Endometrial cancer is one of the most prevalent tumors of the female reproductive system causing serious health effects to women worldwide. Although numerous studies, including analysis of gene expression profile and cellular microenvironment have been reported in this field, pathogenesis of this disease remains unclear. In this study, we performed a system bioinformatics analysis of endometrial cancer using the Gene Expression Omnibus (GEO) datasets (GSE17025, GSE63678, and GSE115810) to identify the core genes. In addition, exosomes derived from endometrial cancer cells were also isolated and identified. First, we analyzed the differentially expressed genes (DEGs) between endometrial cancer tissues and normal tissues in clinic samples. We found that HAND2-AS1, PEG3, OGN, SFRP4, and OSR2 were co-expressed across all 3 datasets. Pathways analysis showed that several pathways associated with endometrial cancer, including "p53 signaling pathway", "Glutathione metabolism", "Cell cycle", and etc. Next, we selected DEGs with highly significant fold change and co-expressed across the 3 datasets and validated them in the TCGA database using Gene Expression Profiling Interactive Analysis (GEPIA). Finally, we performed a survival analysis and identified four genes (TOP2A, ASPM, EFEMP1, and FOXL2) that play key roles in endometrial cancer. We found up-regulation of TOP2A and ASPM in endometrial cancer tissues or cells, while EFEMP1 and FOXL2 were down-regulated. Furthermore, we isolated exosomes from the culturing supernatants of endometrial cancer cells (Ishikawa and HEC-1-A) and found that miR-133a, which regulates expression of FOXL2, were present in exosomes and that they could be delivered to normal endometrial cells. The common DEGs, pathways, and exosomal miRNAs identified in this study might play an important role in progression as well as diagnosis of endometrial cancer. In conclusion, our results provide insights into the pathogenesis and risk assessment of endometrial cancer. Even so, further studies are required to elucidate on the precise mechanism of action of these genes in endometrial cancer.


Assuntos
Progressão da Doença , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Exossomos/metabolismo , Biologia de Sistemas , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos
17.
Cells ; 9(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155950

RESUMO

Synchronous communication between the developing embryo and the receptive endometrium is crucial for embryo implantation. Thus, uterine receptivity evaluation is vital in managing recurrent implantation failure (RIF). The potential roles of small extracellular vesicle (sEV) miRNAs in pregnancy have been widely studied. However, the systematic study of sEVs derived from endometrium and its cargos during the implantation stage have not yet been reported. In this study, we isolated endometrium-derived sEVs from the mouse endometrium on D2 (pre-receptive phase), D4 (receptive phase), and D5 (implantation) of pregnancy. Herein, we reveal that multivesicular bodies (MVBs) in the endometrium increase in number during the window of implantation (WOI). Moreover, our findings indicate that CD63, a well-known sEV marker, is expressed in the luminal and glandular epithelium of mouse endometrium. The sEV miRNA expression profiles indicated that miR-34c-5p, miR-210, miR-369-5p, miR-30b, and miR-582-5p are enriched during WOI. Further, we integrated the RIF's database analysis results and found out that miR-34c-5p regulates growth arrest specific 1 (GAS1) for normal embryo implantation. Notably, miR-34c-5p is downregulated during implantation but upregulated in sEVs. An implication of this is the possibility that sEVs miR-34c-5p could be used to evaluate uterine states. In conclusion, these findings suggest that the endometrium derived-sEV miRNAs are potential biomarkers in determining the appropriate period for embryo implantation. This study also has several important implications for future practice, including therapy of infertility.


Assuntos
Implantação do Embrião/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Animais , Feminino , Humanos , Camundongos , Gravidez
18.
J Cancer ; 11(6): 1315-1324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047538

RESUMO

MicroRNA-183(miR-183) is abnormally expressed in many kinds of tumors. It participates in the initiation and development of tumors. There are many pathways regulate the expression of miR-183. The action mechanism of miR-183 in cancer is very extensive, and contradictory conclusions are often drawn. It was upregulated in 18 kinds of cancer, downregulated in 6 kinds of cancer. In addition, there are seven types of cancer, both upregulated and downregulated reports can be found. Evidence showed that miR-183 can not only directly play the role of oncogene or antioncogene, but also regulate the expression of other oncogene or antioncogene in different cancer types. In this review, we discuss the regulator of miR-183 and summarized the expression of miR-183 in different cancers. We also counted the target genes of miR-183 and the functional roles they play. Furthermore, we focused on the roles of miR-183 in cell migration, cell invasion, epithelial-mesenchymal transition (EMT) and microangiogenesis, which play the most important roles in cancer processes. It sheds light on the likely reasons why miR-183 plays different roles in various cancers. In addition, miR-183 and its downstream effectors have the potential to be promising prognostic markers and therapeutic targets in cancer.

19.
Reprod Biol Endocrinol ; 15(1): 90, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162091

RESUMO

Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA), functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART) to promote fertility efficiency.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/fisiologia , MicroRNAs/fisiologia , Feminino , Humanos , Gravidez , Técnicas de Reprodução Assistida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...