Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116572, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861809

RESUMO

The development of effective drugs for cervical cancer is urgently required because of its high mortality rate and the limited treatment options. Herein, we report the design, synthesis, and evaluation of a series of novel and effective Hsp90-targeting PROTACs. These compounds exhibited potent anti-proliferative activity against cervical cancer cells with low IC50 values. Compound lw13 effectively degraded Hsp90 at a concentration of only 0.05 µM. In addition, it can inhibit the metastasis of cancer cells and induce significant cell cycle arrest and apoptosis. Furthermore, lw13 demonstrated remarkable antitumor activity both in vitro and in vivo, and has a synergistic effect in combination with cisplatin. Moreover, lw13 can prevent the activation of the HER2/AKT/mTOR signaling pathway by indirectly reducing the levels of HER2 and AKT. This study paves the way for cancer treatment and provides valuable insights into the combination therapy of cervical cancer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Cisplatino , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas de Choque Térmico HSP90 , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Cisplatino/farmacologia , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Animais , Linhagem Celular Tumoral , Camundongos , Quimera de Direcionamento de Proteólise
2.
J Med Chem ; 67(11): 8791-8816, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775356

RESUMO

The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 µM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.


Assuntos
Antivirais , Interações Hidrofóbicas e Hidrofílicas , Tioureia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Cães , Animais , Tioureia/farmacologia , Tioureia/análogos & derivados , Tioureia/química , Relação Estrutura-Atividade , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Proteólise/efeitos dos fármacos , Proteínas Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/antagonistas & inibidores , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , Farmacorresistência Viral/efeitos dos fármacos
3.
Eur J Med Chem ; 259: 115678, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37531746

RESUMO

Evidence suggests that rapidly evolving virus subvariants risk rendering current vaccines and anti-influenza drugs ineffective. Hence, exploring novel scaffolds or new targets of anti-influenza drugs is of great urgency. Herein, we report the discovery of a series of acylthiourea derivatives produced via a scaffold-hopping strategy as potent antiviral agents against influenza A and B subtypes. The most effective compound 10m displayed subnanomolar activity against H1N1 proliferation (EC50 = 0.8 nM) and exhibited inhibitory activity toward other influenza strains, including influenza B virus and H1N1 variant (H1N1, H274Y). Additionally, druggability evaluation revealed that 10m exhibited favorable pharmacokinetic properties and was metabolically stable in liver microsome preparations from three different species as well as in human plasma. In vitro and in vivo toxicity studies confirmed that 10m demonstrated a high safety profile. Furthermore, 10m exhibited satisfactory antiviral activity in a lethal influenza virus mouse model. Moreover, mechanistic studies indicated that these acylthiourea derivatives inhibited influenza virus proliferation by targeting influenza virus RNA-dependent RNA polymerase. Thus, 10m is a potential lead compound for the further exploration of treatment options for influenza.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Tioureia , Animais , Humanos , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza B , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA , Tioureia/análogos & derivados , Tioureia/química
4.
Cell Insight ; 2(3): 100092, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37398636

RESUMO

Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.

5.
Antiviral Res ; 213: 105583, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965527

RESUMO

Enterovirus infections have become a serious public health threat to young children, leading to hand-foot-and-mouth disease and more severe nervous system diseases. Due to the lack of licensed anti enterovirus drugs, we reported herein that a Tenovin-1 analog, acylthiourea-based 4-(tert-butyl)-N-((4-(4-(tert-butyl)benzamido)phenyl)carbamothioyl) benzamide (AcTU), displayed low nanomolar anti-EV-A71 activity with an EC50 of 1.0 nM in RD cells. Moreover, AcTU exhibited nanomolar to picomolar inhibitory activity against a series of enteroviruses including EV-D68, CV-A21, CV-A16 and CV-B1 (EC50 = 0.75-17.15 nM). Mechanistic studies indicated that AcTU inhibited enterovirus proliferation by targeting 3D polymerase. In addition, AcTU displayed moderate pharmacokinetic properties in rats (F = 7.4%, T1/2 = 3.26 h), and in vivo protection studies demonstrated that AcTU orally administered at 0.6 mg/kg/d was highly protective against lethal EV-A71 challenge in mice, potentially reducing mortality from 100% to 20% as well as alleviating symptoms. These results suggested that AcTU could be a potent clinical candidate for the treatment of enterovirus infections.


Assuntos
Enterovirus Humano A , Enterovirus Humano D , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Camundongos , Ratos , Animais , Infecções por Enterovirus/tratamento farmacológico , Enterovirus Humano A/fisiologia
6.
J Med Chem ; 65(5): 3814-3832, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35212527

RESUMO

Influenza A viruses possess a high antigenic shift, and the approved anti-influenza drugs are extremely limited, which makes the development of novel anti-influenza drugs for the clinical treatment and prevention of influenza outbreaks imperative. Herein, we report a series of novel aryl benzoyl hydrazide analogs as potent anti-influenza agents. Particularly, analogs 10b, 10c, 10g, 11p, and 11q exhibited potent inhibitory activity against the avian H5N1 flu strain with EC50 values ranging from 0.009 to 0.034 µM. Moreover, compound 11q exhibited nanomolar antiviral effects against both the H1N1 virus and Flu B virus and possessed good oral bioavailability and inhibitory activity against influenza A virus in a mouse model. Preliminary mechanistic studies suggested that these compounds exert anti-influenza virus effects mainly by interacting with the PB1 subunit of RNA-dependent RNA polymerase (RdRp). These results revealed that 11q has the potential to become a potent clinical candidate to combat seasonal influenza and influenza pandemics.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Antivirais/farmacologia , Humanos , Hidrazinas/farmacologia , Influenza Humana/tratamento farmacológico , Camundongos , RNA Polimerase Dependente de RNA , Replicação Viral
7.
Cell Insight ; 1(3): 100030, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37193052

RESUMO

Annual and sporadic influenza outbreaks pose a great threat to human health and the economy worldwide. Moreover, the frequent mutation of influenza viruses caused by antigen drift complicates the application of antiviral therapeutics. As such, there is an urgent need for novel antiviral agents to tackle the problem of insufficient efficacy of licensed drugs. Inspired by the success of the newly emerged PROTACs (PROteolysis TArgeting Chimeras) strategy, we report herein the design and synthesis of novel PROTAC molecules based on an oseltamivir scaffold to combat severe annual influenza outbreaks. Among these, several compounds showed good anti-H1N1 activity and efficient influenza neuraminidase (NA) degradation activity. The best compound, 8e, effectively induced influenza NA degradation in a dose-dependent manner and relied on the ubiquitin-proteasome pathway. Moreover, Compound 8e exhibited potent antiviral activity toward both wild-type H1N1 virus and an oseltamivir-resistant strain (H1N1, H274Y). A molecular docking study demonstrated that Compound 8e had good hydrogen-bonding and hydrophobic interactions with both the active sites of NA and Von Hippel-Lindau (VHL) proteins, which could effectively drive the favorable interaction of these two proteins. Thus, as the first report of a successful anti-influenza PROTAC, this proof of concept will greatly widen the application range of the PROTAC technique to antiviral drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...