Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304797, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38829883

RESUMO

Partially encased concrete (PEC) has better mechanical properties as a structure where steel and concrete work together. Due to the increasing amount of construction waste, recycled aggregate concrete (RAC) is being considered by more people. However, although RAC has more points, the performance is inferior to natural aggregate concrete (NAC). To narrow or address this gap, lightweight, high-strength and corrosion-resistant CFRP can be used, also protecting the steel flange of the PEC structure. Therefore, carbon fiber reinforced polymer (CFRP) confined partially encased recycled coarse aggregate concrete columns were studied in this paper. With respect to different slenderness ratios, recycled coarse aggregate(RCA) replacement ratios, and number of CFRP layers, the performance of the proposed CFRP restrained columns are reported. The RCA replacement ratio is analyzed to be limited negative impact on the bearing capacity, generally within 6%. As for the slenderness ratio, the bearing capacity increased with it. However, wrapping CFRP significantly increased the bearing capacity. Considering the arch factor, a simple formula for calculating the ultimate strength of CFRP-confined partially encased RAC columns is developed based on EC4 and GB50017-2017. By comparison with the experimental values, the error is within 10%.


Assuntos
Fibra de Carbono , Força Compressiva , Materiais de Construção , Polímeros , Reciclagem , Fibra de Carbono/química , Materiais de Construção/análise , Polímeros/química , Teste de Materiais , Aço/química
2.
Sci Rep ; 14(1): 11853, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789485

RESUMO

The objective of this study is to comprehensively assess the behavior of partially encased concrete (PEC) columns with web openings under axial compression. The primary objectives of this study are to analyze damage patterns and investigate the influence of key parameters, such as concrete strength, opening rate, and opening shape, on the ductility index and ultimate load-carrying capacity. The study employs experimental testing to examine the response of the PEC columns, with a particular focus on the mechanisms of concrete fracture and flange flexing. Notably, the study reveals a significant impact of the opening rate on the bearing capacity, while the effect of opening shape is comparatively minor. Furthermore, computational analyses are conducted to deepen the understanding of structural behavior. The study builds upon existing research to propose a novel method for calculating the bearing capacity of PEC columns with web openings. This method introduces two discount factors to enhance predictive accuracy.

3.
Sci Rep ; 14(1): 11872, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789674

RESUMO

As the main gel material of concrete, cement is used in an astonishing amount every year in the construction industry. However, a large amount of CO2 is emitted into the atmosphere while producing cement. Therefore, it is the general trend to look for substitutes for cement and develop new green concrete. Lithium slag (LS) is the industrial waste discharged from lithium salt plants. Through testing, it is found that the chemical composition of LS has a high degree of coincidence with ordinary Portland cement (OPC) Therefore, LS can be incorporated into concrete as supplementary cementations material (SCM) to prepare lithium slag concrete (LSC). The pollution of the natural environment caused by a large number of piled-up and landfilled LS is immeasurable. Consuming and using LS in large quantities and with high efficiency not only eliminates the pollution of lithium slag to the natural environment, but also helps to reduce the amount of cement used in green concrete and truly reuse waste resources. In order to study the mechanical properties of post-heated LSC, the test were carried out for LSC specimens after high-temperature. The main influence factors were considered, including the temperatures of 20℃, 100 â„ƒ, 300 â„ƒ, 500 â„ƒ and 700 â„ƒ, the contents of lithium slag in LSC of 0%, 10%, 20% and 30%, cooling method of LSC after exposure high temperature. The results showed that the mechanical properties of LS concrete specimens were slightly improved at 100 â„ƒ, and when the temperature was 300 â„ƒ or higher, the damage to the specimens was huge and irreversible. An appropriate amount of LS (20% lithium slag content) could improve the strength of LSC. This paper also studied the relationship between lithium slag content and strengths of LS concrete. The research results show that adding an appropriate amount of LS to concrete improves the mechanical properties of concrete. When the LS replacement rate is 20%, the mass loss rate of LSC after different high temperature treatments was the minimum. The cubic compressive strength, axial compressive strength, and flexural strength of specimens with 20% LS substitution can be increased by 8.16%, 8.33%, and 13.46% after high temperature. The cubic compressive strength, axial compressive strength, and flexural strength of specimens with 20% LS substitution can be increased by 8.16%, 8.33%, and 13.46% after high temperature.

4.
PLoS One ; 19(4): e0302176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635601

RESUMO

As one of the key materials used in the civil engineering industry, concrete has a global annual consumption of approximately 10 billion tons. Cement and fine aggregate are the main raw materials of concrete, and their production causes certain harm to the environment. As one of the countries with the largest production of industrial solid waste, China needs to handle solid waste properly. Researchers have proposed to use them as raw materials for concrete. In this paper, the effects of different lithium slag (LS) contents (0%, 10%, 20%, 40%) and different substitution rates of recycled fine aggregates (RFA) (0%, 10%, 20%, 30%) on the axial compressive strength and stress-strain curve of concrete are discussed. The results show that the axial compressive strength, elastic modulus, and peak strain of concrete can increase first and then decrease when LS is added, and the optimal is reached when the LS content is 20%. With the increase of the substitution rate of RFA, the axial compressive strength and elastic modulus of concrete decrease, but the peak strain increases. The appropriate amount of LS can make up for the mechanical defects caused by the addition of RFA to concrete. Based on the test data, the stress-strain curve relationship of lithium slag recycled fine aggregate concrete is proposed, which has a high degree of agreement compared with the test results, which can provide a reference for practical engineering applications. In this study, LS and RFA are innovatively applied to concrete, which provides a new way for the harmless utilization of solid waste and is of great significance for the control of environmental pollution and resource reuse.


Assuntos
Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Lítio , Resíduos Sólidos , Materiais de Construção , Reciclagem/métodos , Resíduos Industriais/análise
5.
Sci Rep ; 13(1): 10075, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344619

RESUMO

This paper focuses on the axial compression performance of 15 concrete-filled double skinned tubes CFDST columns with different CFRP reinforcement schemes. The design of this test used an outer square steel tube with a square steel tube inside, with concrete poured at the sandwich and the inner steel tube kept hollow. The structure is both cost effective and allows the hollow to be used for utility access. However, in recent years damage to CFDST has occurred due to fire, earthquakes, corrosion etc. Therefore, research into the reinforcement and repair of this structure is crucial. Compared to other reinforcement methods, FRP has the advantage of being lighter and more robust and does not significantly alter the original structure. In this study, the mechanical properties of the specimens were further analyzed from the data of load displacement, peak load and ultimate displacement by mainly observing and analyzing the damage mechanism of the specimens through the strengthening effect of different strengthening schemes for different hollow ratios. The results show that when the hollow ratio is not bigger than 0.33, the CFRP reinforcement effect is relatively obvious, especially the three-layer CFRP wrapped CFDST specimens have a substantial increase in bearing capacity and stiffness. Finally, an analytical study was carried out based on previous research and the experimental results agreed well with the calculated results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...