Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Dent Sci ; 19(3): 1389-1395, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035323

RESUMO

Background/purpose: Accumulating evidence has suggested that treatment failure of cancer therapy can be attributed to cancer stem cells (CSCs). Among numerous regulators of cancer stemness, non-coding RNAs (ncRNAs) have gained significant attention recently. In this study, we examined the role of gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC) in oral CSCs (OCSCs). Materials and methods: RNA Sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine the expression of GAPLINC. Flow cytometry and sphere-forming assay were exploited to isolate OCSCs. Measurement of aldehyde dehydrogenase 1 (ALDH1) activity, CD44 expressing cells, and various phenotypic assays, such as self-renewal, migration, invasion, and colony-forming abilities, were conducted in CSCs of two types of oral cancer cells (SAS and GNM) following the knockdown of GAPLINC. A luciferase reporter was also carried out to validate the direct interaction between GAPLINC and microRNA (miR)-331-3p. Results: Our results showed that GAPLINC was overexpressed in OCSCs from patient-derived and oral cancer cell lines. We demonstrated that silencing of GAPLINC in OCSCs downregulated various CSC hallmarks, such as ALDH1 activity, percentage of CD44-expressing cells, self-renewal capacity, and colony-forming ability. Moreover, our results revealed that the effect of GAPLINC on cancer stemness was mediated by direct repression of miR-331-3p. Conclusion: These data have potential clinical implications in that we unraveled the aberrant upregulation of GAPLINC and demonstrated that suppression of GAPLINC may reduce cancer stemness via sequestering miR-331-3p.

2.
Diagnostics (Basel) ; 13(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296733

RESUMO

Although widely used, CT-guided lung nodule localization is associated with a significant risk of complications, including pneumothorax and pulmonary hemorrhage. This study identified potential risk factors affecting the complications associated with CT-guided lung nodule localization. Data from patients with lung nodules who underwent preoperative CT-guided localization with patent blue vital (PBV) dye at Shin Kong Wu Ho-Su Memorial Hospital, Taiwan, were retrospectively collected. Logistic regression analysis, the chi-square test, and the Mann-Whitney test were used to analyze the potential risk factors for procedure-related complications. We included 101 patients with a single nodule (49 with pneumothorax and 28 with pulmonary hemorrhage). The results revealed that men were more susceptible to pneumothorax during CT-guided localization (odds ratio: 2.48, p = 0.04). Both deeper needle insertion depth (odds ratio: 1.84, p = 0.02) and nodules localized in the left lung lobe (odds ratio: 4.19, p = 0.03) were associated with an increased risk of pulmonary hemorrhage during CT-guided localization. In conclusion, for patients with a single nodule, considering the needle insertion depth and patient characteristics during CT-guided localization procedures is probably important for reducing the risk of complications.

3.
J Dent Sci ; 18(2): 814-821, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021272

RESUMO

Background/purpose: Emerging evidence has shown that various failures in cancer therapy, such as drug resistance, metastasis, and cancer relapse are attributed to cancer stem cells (CSCs). Also, growing attention has been paid to the regulation of non-coding RNAs in cancer stemness. Here, we aimed to investigate the contribution of LINC01296 in the modulation of oral CSCs. Materials and methods: The phenotypic assays including migration, invasion, and colony-forming abilities were carried out in CSCs of two types of oral cancer cells (SAS and GNM) following the knockdown of LINC01296. In addition, the percentage of cells expressing stemness marker, ALDH1, and drug resistance marker, ABCG2, was examined as well as the self-renewal capacity after silencing of LINC01296. Moreover, a luciferase reporter was used to validate the direct interaction between LINC01296 and miR-143. Results: Our results showed that LINC01296 was significantly overexpressed in oral cancer tissues and positively correlated with stemness markers. The phenotypic and flow cytometry assays demonstrated that suppression of LINC01296 reduced the aggressiveness, cancer stemness features, and colony-forming and self-renewal abilities in oral CSCs. Furthermore, we demonstrated that LINC01296 may enhance cancer stemness features through suppression of the effect of miR-143. Conclusion: Silencing of LINC01296 may be a promising direction for oral cancer therapy by reducing cancer stemness via regulation of miR-143.

4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769350

RESUMO

While genetic analyses have revealed ~100 risk loci associated with osteoarthritis (OA), only eight have been linked to hand OA. Besides, these studies were performed in predominantly European and Caucasian ancestries. Here, we conducted a genome-wide association study in the Han Chinese population to identify genetic variations associated with the disease. We recruited a total of 1136 individuals (n = 420 hand OA-affected; n = 716 unaffected control subjects) of Han Chinese ancestry. We carried out genotyping using Axiom Asia Precisi on Medicine Research Array, and we employed the RegulomeDB database and RoadMap DNase I Hypersensitivity Sites annotations to further narrow down our potential candidate variants. Genetic variants identified were tested in the Geisinger's hand OA cohort selected from the Geisinger MyCode community health initiative (MyCode®). We also performed a luciferase reporter assay to confirm the potential impact of top candidate single-nucleotide polymorphisms (SNPs) on hand OA. We identified six associated SNPs (p-value = 6.76 × 10-7-7.31 × 10-6) clustered at 2p13.2 downstream of the CYP26B1 gene. The strongest association signal identified was rs883313 (p-value = 6.76 × 10-7, odds ratio (OR) = 1.76), followed by rs12713768 (p-value = 1.36 × 10-6, OR = 1.74), near or within the enhancer region closest to the CYP26B1 gene. Our findings showed that the major risk-conferring CC haplotype of SNPs rs12713768 and rs10208040 [strong linkage disequilibrium (LD); D' = 1, r2 = 0.651] drives 18.9% of enhancer expression activity. Our findings highlight that the SNP rs12713768 is associated with susceptibility to and severity of hand OA in the Han Chinese population and that the suggested retinoic acid signaling pathway may play an important role in its pathogenesis.


Assuntos
Osteoartrite , Vitamina A , Humanos , Ácido Retinoico 4 Hidroxilase/genética , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Alelos , Osteoartrite/genética , Polimorfismo de Nucleotídeo Único , Genes Reguladores , Estudos de Casos e Controles , Genótipo , China
5.
Acta Pharmaceutica Sinica ; (12): 118-126, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-964295

RESUMO

Molecular dynamics simulation technology relies on Newtonian mechanics to simulate the motion of molecular system of the real system by computer simulation. It has been used in the research of self-assembly processes illustration and macroscopic performance prediction of self-assembly nano-drug delivery systems (NDDS) in recent years, which contributes to the facilitation and accurate design of preparations. In this review, the definitions, catalogues, and the modules of molecular dynamics simulation techniques are introduced, and the current status of their applications are summarized in the acquisition and analysis of microscale information, such as particle size, morphology, the formation of microdomains, and molecule distribution of the self-assembly NDDS and the prediction of their macroscale performances, including stability, drug loading capacity, drug release kinetics and transmembrane properties. Moreover, the existing applications of the molecular dynamic simulation technology in the formulation prediction of self-assembled NDDS were also summarized. It is expected that the new strategies will promote the prediction of NDDS formulation and lay a theoretical foundation for an appropriate approach in NDDS studies and a reference for the wider application of molecular dynamics simulation technology in pharmaceutics.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1008677

RESUMO

This study investigated the drug delivery performance of oral co-loaded puerarin(PUE) and daidzein(DAZ) mixed micelles(PUE/DAZ-FS/PMMs) from the perspectives of pharmacokinetics, pharmacodynamics, and tissue distribution. The changes in PUE plasma concentration in rats were evaluated based on PUE suspension, single drug-loaded micelles(PUE-FS/PMMs), and co-loaded micelles(PUE/DAZ-FS/PMMs). Spontaneously hypertensive rats(SHR) were used to monitor systolic blood pressure, diastolic blood pressure, and mean arterial pressure for 10 weeks after administration by tail volume manometry. The content of PUE in the heart, liver, spleen, lung, kidney, brain, and testes was determined using LC-MS/MS. The results showed that compared with PUE suspension and PUE-FS/PMMs, PUE/DAZ-FS/PMMs significantly increased C_(max) in rats(P<0.01) and had a relative bioavailability of 122%. The C_(max), AUC_(0-t), AUC_(0-∞), t_(1/2), and MRT of PUE/DAZ-FS/PMMs were 1.77, 1.22, 1.22, 1.17, and 1.13 times higher than those of PUE suspension, and 1.76, 1.16, 1.08, 0.84, and 0.78 times higher than those of PUE-FS/PMMs, respectively. Compared with the model control group, PUE/DAZ-FS/PMMs significantly reduced systolic blood pressure, diastolic blood pressure, and mean arterial pressure in SHR rats(P<0.05). The antihypertensive effect of PUE/DAZ-FS/PMMs was greater than that of PUE suspension, and even greater than that of PUE-FS/PMMs at high doses. Additionally, the distribution of PMMs in various tissues showed dose dependency. The distribution of PMMs in the kidney and liver, which are metabolically related tissues, was lower than that in the suspension group, while the distribution in the brain was higher than that in the conventional dose group. In conclusion, PUE/DAZ-FS/PMMs not only improved the bioavailability of PUE and synergistically enhanced its therapeutic effect but also prolonged the elimination of the drug to some extent. Furthermore, the micelles facilitated drug penetration through the blood-brain barrier. This study provides a foundation for the development of co-loaded mixed micelles containing homologous components.


Assuntos
Ratos , Animais , Micelas , Distribuição Tecidual , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ratos Endogâmicos SHR , Isoflavonas/farmacologia
7.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165185

RESUMO

Developing heterogeneous catalysts with atomically dispersed active sites is vital to boost peroxymonosulfate (PMS) activation for Fenton-like activity, but how to controllably adjust the electronic configuration of metal centers to further improve the activation kinetics still remains a great challenge. Herein, we report a systematic investigation into heteroatom-doped engineering for tuning the electronic structure of Cu-N4 sites by integrating electron-deficient boron (B) or electron-rich phosphorus (P) heteroatoms into carbon substrate for PMS activation. The electron-depleted Cu-N4/C-B is found to exhibit the most active oxidation capacity among the prepared Cu-N4 single-atom catalysts, which is at the top rankings of the Cu-based catalysts and is superior to most of the state-of-the-art heterogeneous Fenton-like catalysts. Conversely, the electron-enriched Cu-N4/C-P induces a decrease in PMS activation. Both experimental results and theoretical simulations unravel that the long-range interaction with B atoms decreases the electronic density of Cu active sites and down-shifts the d-band center, and thereby optimizes the adsorption energy for PMS activation. This study provides an approach to finely control the electronic structure of Cu-N4 sites at the atomic level and is expected to guide the design of smart Fenton-like catalysts.

8.
Medicine (Baltimore) ; 100(46): e27842, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797318

RESUMO

ABSTRACT: Intraoperative radiation therapy (IORT) is an alternative to whole breast irradiation in selected early-stage breast cancer patients. In this single institute analysis, we report the preliminary results of IORT given by Axxent Electronic Brachytherapy (eBT) system.Patients treated with lumpectomy and eBT within a minimum follow-up period of 12 months were analyzed. Eligible criteria include being over the age of 45, having unifocal invasive ductal carcinoma (IDC) or ductal carcinoma in situ <3 cm in diameter, not exhibiting lymph node involvement on preoperative images, and negative sentinel lymph node biopsy. The eBT was given by preloaded radiation plans to deliver a single fraction of 20 Gray (Gy) right after lumpectomy.From January 2016 to April 2019, a total of 103 patients were collected. There were 78 patients with IDC and 25 with ductal carcinoma in situ. At a mean follow-up time of 31.1 months (range, 14.5-54.0 months), the local control rate was 98.1%. Two IDC patients had tumor recurrences (1 local and 1 regional failure). Post-IORT radiotherapy was given to 4 patients. There were no cancer related deaths, no distant metastases, and treatment side effects greater than grade 3 documented.We report the largest single institute analysis using the eBT system in Taiwan. The low recurrence and complication rates at a 31.1 month follow-up time support the use of the eBT system in selected early-stage breast cancer patients.


Assuntos
Braquiterapia , Neoplasias da Mama/radioterapia , Carcinoma Ductal de Mama/radioterapia , Carcinoma Intraductal não Infiltrante/radioterapia , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/cirurgia , Feminino , Seguimentos , Humanos , Mastectomia Segmentar , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Resultado do Tratamento
9.
Small ; 17(6): e2007264, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470516

RESUMO

Developing a rapid and low cost approach to access atomically dispersed metal catalysts (ADMCs) supported by carbon is important but still challenging. Here, an electric flash strategy using high voltage for the rapid fabrication of carbon-supported ADMCs within 1 min is reported. Continuous plasma arc results in nitrogen-doped carbon ultrathin nanosheets, while an intermittent spark pulse constructs carbon hollow nanospheres via blasting effect, and both structures are decorated with atomically dispersed cobalt. The latter catalyst shows a half-wave potential of 0.887 V versus RHE (47 mV higher than commercial Pt/C) in an oxygen reduction reaction (ORR) in alkaline media. The authors' work paves the way to rapid synthesis of carbon-supported ADMCs at both low cost and mass production.

10.
ACS Nano ; 14(11): 14731-14739, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33146012

RESUMO

Graphene oxide (GO) has recently been highlighted as a promising multipurpose two-dimensional material. However, free-standing graphene oxide films suffer from poor strength and flexibility, which limits scaling-up of production and lifetime structural robustness in applications. Inspired by the relationship between the organic and inorganic components of the hierarchical structure of nacre found in mollusk shells, we have fabricated self-assembled, layered graphene-based composite films. The organic phase of our composite is produced via environmentally friendly and economical methods based on bacterial production of γ-poly(glutamic acid) (PGA). Composite films made of GO, PGA, and divalent cations (Ca2+) were prepared through a slow solvent evaporation method at ambient temperature, resulting in a nacre-like layered structure. These biobased nanocomposite films showed impressive mechanical properties, which resulted from a synergistic combination of hydrogen bonding with the bacterially produced PGA and ionic bonding with calcium ions (Ca2+). The GO/PGA/Ca2+ composite films possessed a high strength of 150 ± 51.9 MPa and a high Young's modulus of 21.4 ± 8.7 GPa, which represents an increase of 120% and over 70% with respect to pure GO films. We provide rational design strategies for the production of graphene-based films with improved mechanical performance, which can be applied in filtration purification of wastewater in the paper, food, beverage, pigment, and pharmaceuticals industries, as well as for manufacturing of functional membranes and surface coatings.


Assuntos
Grafite , Nácar , Nanocompostos , Polímeros
11.
Bioconjug Chem ; 31(5): 1474-1485, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32286806

RESUMO

Exploring a combined phototherapeutic strategy to overcome the limitations of a single mode therapy and inducing high anticancer efficiency is highly promising for precision cancer nanomedicine. However, a single-wavelength laser activates dual photothermal/photodynamic therapy (PTT/PDT) treatment is still a formidable challenge. Herein, we strategically design and fabricate a multifunctional theranostic nanosystem based on chlorin e6-functionalized polydopamine (PDA) coated prussian blue/manganese dioxide nanoparticles (PB-MnO2@PDA-Ce6 NPs). Interestingly, the obtained PB-MnO2@PDA NPs not only offer an effective delivery system for Ce6 but also provide strong optical absorption in the near-infrared range, endowing high antitumor efficacy of PTT. More importantly, the as-prepared PB-MnO2@PDA-Ce6 nanoagents exhibit an effective oxygen generation, superior reactive oxygen species (ROS), and outstanding photothermal conversion ability to greatly improve PTT and PDT treatments. As a result, both in vitro and in vivo treatments guided by MR imaging on liver cancer cells reveal the complete cell/tumor eradication under a single wavelength of 660 nm laser irradiation, implying the simultaneous synergistic PDT/PTT effects triggered by PB-MnO2@PDA-Ce6 nanoplatform, which are much higher than individual treatment. Taken together, our phototherapeutic nanoagents exhibit an excellent therapeutic performance, which may act as a nanoplatform to find safe and clinically translatable routes to accelerate cancer therapeutics.


Assuntos
Ferrocianetos/química , Indóis/química , Raios Infravermelhos , Compostos de Manganês/química , Nanopartículas/química , Óxidos/química , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Polímeros/química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Indóis/farmacologia , Lasers , Polímeros/farmacologia
13.
Small ; 15(22): e1805312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951252

RESUMO

The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost-effective, and eco-friendly composite materials.


Assuntos
Materiais Biomiméticos/química , Nanocompostos/química , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Ácido Poliglutâmico/química
14.
J Mater Chem B ; 7(12): 2032-2042, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254807

RESUMO

Development of near infrared (NIR) light-responsive nanomaterials for high performance multimodal phototherapy within a single nanoplatform is still challenging in technology and biomedicine. Herein, a new phototherapeutic nanoagent based on FDA-approved Prussian blue (PB) functionalized oxygen-deficient molybdenum oxide nanoparticles (MoO3-x NPs) is strategically designed and synthesized by a facile one-pot size/morphology-controlled process. The as-prepared PB-MoO3-x nanocomposites (NCs) with a uniform particle size of ∼90 nm and high water dispersibility exhibited strong optical absorption in the first biological window, which is induced by plasmon resonance in an oxygen-deficient MoO3-x semiconductor. More importantly, PB-MoO3-x NCs not only exhibited a high photothermal conversion efficiency of ∼63.7% and photostability but also offered a further approach for the generation of reactive oxygen species (ROS) upon singular NIR light irradiation which significantly improved the therapeutic efficiency of the PB agent. Furthermore, PB-MoO3-x NCs showed a negligible cytotoxic effect in the dark, but an excellent therapeutic effect toward two triple-negative breast cancer (TNBC) cell lines at a low concentration (20 µg mL-1) of NCs and a moderate NIR laser power density. Additionally, efficient tumor ablation and metastasis inhibition in a 4T1 TNBC mouse tumor model can also be realized by synergistic photothermal/photodynamic therapy (PTT/PDT) under a single continuous NIR wave laser. Taken together, this study paved the way for the use of a single nanosystem for multifunctional therapy.


Assuntos
Corantes/uso terapêutico , Ferrocianetos/uso terapêutico , Molibdênio/uso terapêutico , Nanocompostos/uso terapêutico , Nanopartículas/uso terapêutico , Óxidos/uso terapêutico , Fototerapia , Neoplasias de Mama Triplo Negativas/terapia , Animais , Linhagem Celular Tumoral , Corantes/química , Feminino , Ferrocianetos/química , Humanos , Lasers , Camundongos Endogâmicos BALB C , Molibdênio/química , Nanocompostos/química , Nanopartículas/química , Óxidos/química , Espécies Reativas de Oxigênio/química , Neoplasias de Mama Triplo Negativas/patologia
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-843429

RESUMO

Bile acid as a signaling molecule can specifically bind to bile acid receptors (such as farnesoid X receptor and G-protein-coupled bile acid receptor) to mediate a series of biological regulation reactions. In recent years, it has been found that bile acids are widely involved in glucose metabolism, lipid metabolism and energy metabolism. The development of metabolic diseases is usually accompanied by the changes of bile acid profiles and receptors, and thus bile acids may be applied as potential biomarkers for clinical diagnosis, prediction, and evaluation of therapeutic effects. This article reviews the relationship between bile acids and metabolic diseases, and the treatment of metabolic diseases based on the regulation of bile acid metabolism.

16.
Dalton Trans ; 47(30): 10206-10212, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30014061

RESUMO

In this study, we report a simple method to prepare nitrogen-doped graphene, with which a nitrogen-doped graphene/SnO2 composite was successfully fabricated and employed as a lithium battery anode. Electrochemical test results indicated that the as-prepared nitrogen-doped graphene/SnO2 electrode possesses high reversible capacity and outstanding charging and discharging capabilities, which would make it possible to meet the requirements for portable electronic devices in the future. These super electrochemical properties could benefit from the synergistic effect of SnO2 nanoparticles that contribute to the high capacity and nitrogen-doped graphene that could enhance the electroconductivity. Moreover, the graphene nanosheet provides a large specific surface area for SnO2 nanoparticles to anchor on, which could efficiently overcome the structure destruction of SnO2-based electrodes during continuous charging and discharging tests. This concept can offer a general approach toward designing anode materials with better performance.

17.
J Clin Ultrasound ; 46(5): 361-363, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29159809

RESUMO

Synovial chondromatosis is a rare, benign, proliferative cartilaginous lesion arising from the synovial tissue, tenosynovium, or bursal lining. We describe the case of a patient who initially presented with multiple axillary masses. Breast ultrasound (US) was requested due to the concern of a breast tumor with axillary lymph node metastases. US study was helpful and provided adequate information to suggest the diagnosis.


Assuntos
Condromatose Sinovial/complicações , Condromatose Sinovial/diagnóstico por imagem , Doenças Linfáticas/diagnóstico por imagem , Doenças Linfáticas/etiologia , Articulação do Ombro/diagnóstico por imagem , Axila/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Linfonodos/diagnóstico por imagem , Pessoa de Meia-Idade , Ultrassonografia
18.
Nanoscale ; 9(36): 13800-13807, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890973

RESUMO

Heterogeneous catalytic hydrogenation reactions are of great importance to the petrochemical industry and fine chemical synthesis. Herein, we present the first example of gadolinium hydroxide (Gd(OH)3) nanorods as a support for loading ultra-small Pd nanoparticles for hydrogenation reactions. Gd(OH)3 possesses a large number of hydroxyl groups on the surface, which act as an ideal support for good dispersion of Pd nanoparticles. Gd(OH)3 nanorods are prepared by hydrothermal treatment, and Pd/Gd(OH)3 catalyst with a low loading of 0.95 wt% Pd is obtained by photochemical deposition. The catalytic hydrogenation of p-nitrophenol (4-NP) to p-aminophenol (4-AP) and styrene to ethylbenzene is performed as a model reaction. The obtained Pd/Gd(OH)3 catalyst displays excellent activity as compared to other reported heterogeneous catalysts. The rate constant of 4-NP reduction is measured to be 0.047 s-1 and the Pd/Gd(OH)3 nanocatalyst shows no marked loss of activity even after 10 consecutive cycles. Additionally, the hydrogenation of styrene to ethylbenzene over Pd/Gd(OH)3 nanorods exhibits a turnover frequency (TOF) as high as 6159 h-1 with 100% selectivity. Moreover, the catalyst can be recovered by centrifugation and recycled for up to 5 consecutive cycles without obvious loss of activity. Our results indicate that Gd(OH)3 nanorods act as a promoter to enhance the catalytic activity by providing a synergistic effect from the strong metal support interaction and the large surface area for high dispersion of small sized Pd nanoparticles enriched with hydroxyl groups on the surface. The high performance of Pd/Gd(OH)3 in heterogeneous catalysis offers a new, efficient and facile strategy to explore other metal hydroxides or oxides as supports for organic transformations.

19.
ACS Appl Mater Interfaces ; 9(4): 3757-3765, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28071884

RESUMO

As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe3O4/VOx hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li+. With the assistance of carbon coating, the obtained Fe3O4/VOx@C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe3O4/VOx@C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g-1 after 400 cycles at a current density of 0.5 A g-1. Moreover, a remarkable reversible capacity of 556 mAh g-1 could be retained even at a current density of 2 A g-1. This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

20.
ACS Appl Mater Interfaces ; 8(37): 24550-8, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27598838

RESUMO

In this work, we report the synthesis of Cd1-xZnxS zinc blende/wurtzite (ZB/WZ) heterophase nanojunctions with highly efficient charge separation by a solvothermal method in a mixed solution of diethylenetriamine (DETA) and distilled water. l-Cysteine was selected as a sulfur source and a protecting ligand for stabilization of the ZB/WZ homojunction. The optimal ternary chalcogenide Cd0.7Zn0.3S elongated nanocrystals (NCs) without any cocatalyst loading show very high visible light photocatalytic activity with H2 production efficiency of 3.13 mmol h(-1) and an apparent quantum efficiency of 65.7% at 420 nm. This is one of the best visible light photocatalysts ever reported for photocatalytic hydrogen production without any cocatalysts. The charge separation efficiency, having a critical role in enhancing photocatalytic activity for hydrogen production, was significantly improved. Highly efficient charge separation with a prolonged carrier lifetime is driven by the internal electrostatic field originating from the type-II staggered band alignment at the ZB/WZ junctions, as confirmed by steady and time-resolved photoluminescence spectra. Further, the strong binding between the l-cysteine ligand and Cd1-xZnxS elongated nanocrystals protects and stabilizes NCs; the l-cysteine ligand at the interface could trap holes from Cd1-xZnxS NCs, while photogenerated electrons transfer to Cd1-xZnxS catalytic sites for proton reduction. Our results demonstrate that Cd1-xZnxS ZB/WZ heterophase junctions stabilized by l-cysteine molecules can effectively separate charge carriers and achieve highly visible light photocatalytic hydrogen production. The present study provides a new insight into the design and fabrication of advanced materials with homojunction structures for photocatalytic applications and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...