Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 309, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467761

RESUMO

Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.


Assuntos
Ecossistema , Pradaria , Nitrogênio , Biodiversidade , Plantas
2.
Ecology ; 105(5): e4288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522859

RESUMO

Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity-stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities.


Assuntos
Biodiversidade , Kelp , Kelp/fisiologia , Animais , Oceano Pacífico , Invertebrados/fisiologia , Temperatura Alta , Mudança Climática
3.
Nat Ecol Evol ; 6(11): 1669-1675, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123533

RESUMO

Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m2) to plot (400 m2) and regional (5-214 km2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes.


Assuntos
Biodiversidade , Ecossistema , Plantas , Mudança Climática
4.
Ecol Evol ; 12(8): e9182, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35949532

RESUMO

Soil organic carbon (SOC) dynamics is regulated by a complex interplay of factors such as climate and potential anthropogenic activities. Livestocks play a key role in regulating the C cycle in grasslands. However, the interrelationship between SOC and these drivers remains unclear at different soil layers, and their potential relationships network have rarely been quantitatively assessed. Here, we completed a six-year manipulation experiment of grazing exclusion (no grazing: NG) and increasing grazing intensity (light grazing: LG, medium grazing: MG, heavy grazing: HG). We tested light fraction organic carbon (LFOC) and heavy fraction organic carbon (HFOC) in 12 plots along grazing intensity in three soil layers (topsoil: 0-10 cm, mid-soil: 10-30 cm, subsoil: 30-50 cm) to assess the drivers of SOC. Grazing significantly reduced SOC of the soil profile, but with significant depth and time dependencies. (1) SOC and SOC stability of the topsoil is primarily regulated by grazing duration (years). Specifically, grazing duration and grazing intensity increased the SOC lability of topsoil due to an increase in LFOC. (2) Grazing intensity was the major factor affecting the mid-soil SOC dynamics, among which MG had significantly lower SOC than did NG. (3) Subsoil organic carbon dynamics were mainly regulated by climatic factors. The increase in mean annual temperature (MAT) may have promoted the turnover of LFOC to HFOC in the subsoil. Synthesis and applications. When evaluating the impacts of grazing on soil organic fraction, we need to consider the differences in sampling depth and the duration of grazing years. Our results highlight that the key factors influencing SOC dynamics differ among soil layers. Climatic and grazing factors have different roles in determining SOC in each soil layer.

6.
Ecol Lett ; 24(10): 2054-2064, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34319652

RESUMO

Livestock grazing is a major driver shaping grassland biodiversity, functioning and stability. Whether grazing impacts on grassland ecosystems are scale-dependent remains unclear. Here, we conducted a sheep-grazing experiment in a temperate grassland to test grazing effects on the temporal stability of productivity across scales. We found that grazing increased species stability but substantially decreased local community stability due to reduced asynchronous dynamics among species within communities. The negative effect of grazing on local community stability propagated to reduce stability at larger spatial scales. By decreasing biodiversity both within and across communities, grazing reduced biological insurance effects and hence the upscaling of stability from species to communities and further to larger spatial scales. Our study provides the first evidence for the scale dependence of grazing effects on grassland stability through biodiversity. We suggest that ecosystem management should strive to maintain biodiversity across scales to achieve sustainability of grassland ecosystem functions and services.


Assuntos
Ecossistema , Pradaria , Animais , Biodiversidade , Ovinos
7.
Sci Total Environ ; 780: 146674, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030338

RESUMO

Although the relationship between biodiversity and ecosystem functioning has been extensively studied, it remains unclear if the relationships of biodiversity with productivity and its spatial stability vary along productivity gradients in natural ecosystems. Based on a large dataset from 2324 permanent forest inventory plots across northeastern China, we examined the intensity of species richness (SR) and tree size diversity (Hd) effects on aboveground wood productivity (AWP) and its spatial stability among different productivity levels. Structural equation modeling was applied, integrating abiotic (climate and soil) and biotic (stand density) factors. Our results demonstrated that both SR and Hd positively affected AWP and its spatial stability, and the intensity of these positive effects decreased with increasing productivity. At low productivity levels, SR and Hd increased spatial stability by reducing spatial variability and increasing mean AWP. At high productivity levels, stability increased only through mean AWP increase. Moreover, temperature and stand density affected the AWP directly and indirectly via biodiversity, and the strength and direction of these effects varied among different productivity levels. We concluded that biodiversity could simultaneously enhance productivity and its spatial stability in temperate forests, and that the effect intensity was uniform along productivity gradients, which provided a new perspective on relationships within biodiversity-ecosystem functioning.


Assuntos
Ecossistema , Florestas , Biodiversidade , Biomassa , China , Árvores
8.
Proc Natl Acad Sci U S A ; 116(48): 23887-23888, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31662473
9.
Ecol Evol ; 8(16): 8187-8196, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250694

RESUMO

Grazing effects on arid and semi-arid grasslands can be constrained by aridity. Plant functional groups (PFGs) are the most basic component of community structure (CS) and biodiversity & ecosystem function (BEF). They have been suggested as identity-dependent in quantifying the response to grazing intensity and drought severity. Here, we examine how the relationships among PFGs, CS, BEF, and grazing intensity are driven by climatic drought. We conducted a manipulative experiment with three grazing intensities in 2012 (nondrought year) and 2013 (drought year). We classified 62 herbaceous plants into four functional groups based on their life forms. We used the relative species abundance of PFGs to quantify the effects of grazing and drought, and to explore the mechanisms for the pathway correlations using structural equation models (SEM) among PFGs, CS, and BEF directly or indirectly. Grazers consistently favored the perennial forbs (e.g., palatable or nutritious plants), decreasing the plants' relative abundance by 23%-38%. Drought decreased the relative abundance of ephemeral plants by 42 ± 13%; and increased perennial forbs by 20 ± 7% and graminoids by 80 ± 31%. SEM confirmed that annuals and biennials had negative correlations with the other three PFGs, with perennial bunchgrasses facilitated by perennial rhizome grass. Moreover, the contributions of grazing to community structure (i.e., canopy height) were 1.6-6.1 times those from drought, whereas drought effect on community species richness was 3.6 times of the grazing treatment. Lastly, the interactive effects of grazing and drought on BEF were greater than either alone; particularly, drought escalated grazing damage on primary production. Synthesis. The responses of PFGs, CS, and BEF to grazing and drought were identity-dependent, suggesting that grazing and drought regulation of plant functional groups might be a way to shape ecosystem structure and function in grasslands.

10.
Ecol Appl ; 28(1): 201-211, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29034532

RESUMO

Large herbivores have pronounced effects on nutrient cycling in grasslands. These organisms are known to alter the quality and quantity of plant production as well as the amounts and quality of plant litter and animal wastes. The generalization that the relative quality of detritus inputs is enhanced by herbivores is well known, but how this process is affected by diet selection processing and feces production of different large herbivores remains largely unstudied. Here, we measured how these differences for cattle and sheep on a dry grassland might influence nitrogen (N) mineralization from feces. We found that cattle of larger body size tended to select the low quality grass Stipa grandis as their major food source. In contrast, the subdominant grass Leymus chinensis, with relatively high N content, was a majority in the diet of smaller sheep, when palatable forbs were insufficient in the field. This diverse diet quality resulted in a C:N ratio of cattle feces that was higher than that of sheep feces. Relatively higher labile C availability in the cattle feces, namely relatively higher cellulose/hemicellulose contents, promoted microbial growth and in turn accelerated cattle feces decomposition. A surprise finding was that the feces from cattle mineralized about twice as much N as feces from sheep, despite the latter having slightly higher N content. From a grassland productivity perspective, increasing the proportion of large body-sized species in grazing herbivore assemblages perhaps is beneficial to forage productivity and nutrient recycling by the rapid degradation of feces.


Assuntos
Ciclo do Carbono , Fezes/química , Pradaria , Herbivoria , Ciclo do Nitrogênio , Animais , Bovinos , Ovinos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...