Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw ; 17(6): 1411-23, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17131657

RESUMO

In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang et al. developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance.


Assuntos
Algoritmos , Armazenamento e Recuperação da Informação/métodos , Teoria da Informação , Redes Neurais de Computação , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Sistemas On-Line
2.
Int J Neural Syst ; 16(1): 29-38, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16496436

RESUMO

In this paper, a recently developed machine learning algorithm referred to as Extreme Learning Machine (ELM) is used to classify five mental tasks from different subjects using electroencephalogram (EEG) signals available from a well-known database. Performance of ELM is compared in terms of training time and classification accuracy with a Backpropagation Neural Network (BPNN) classifier and also Support Vector Machines (SVMs). For SVMs, the comparisons have been made for both 1-against-1 and 1-against-all methods. Results show that ELM needs an order of magnitude less training time compared with SVMs and two orders of magnitude less compared with BPNN. The classification accuracy of ELM is similar to that of SVMs and BPNN. The study showed that smoothing of the classifiers' outputs can significantly improve their classification accuracies.


Assuntos
Eletroencefalografia , Aprendizagem/fisiologia , Processos Mentais/fisiologia , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Algoritmos , Eletroencefalografia/classificação , Eletroencefalografia/métodos , Humanos , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...