Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 3069-3077, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629567

RESUMO

Microplastic pollution in the soil environment has received extensive attention, but the effects of different land use patterns on the sub-watershed scale on soil microplastic pollution are poorly understood. The Luoshijiang sub-watershed in the north of Erhai Lake was selected as the research object, and the characteristics of microplastic pollution in farmland, riparian zone, grassland, and woodland soils were analyzed. The pollution risks of microplastics in the four types of soil were assessed using the polymer risk index method, and the effects of land use patterns on the distribution and risk of microplastic pollution were further explored. The results showed that:① The abundance of microplastics in the soil of the Luoshijiang sub-watershed ranged from 220 to 1 900 n·kg-1, and the average abundance was (711 ± 55) n·kg-1. The main polymer types were polyester (PES, 32.52%) and polyethylene terephthalate (PET, 21.95%). The particle size of microplastics was concentrated in the range of 0.5-2 mm (61.89%). Fiber was the main shape of microplastics (>75%), and the dominant color was transparent (58.50%). ② Land use patterns determined the abundance and pollution characteristics of soil microplastics in the Luoshijiang sub-watershed. A significantly higher abundance of microplastics was found in the soil of farmland[(885 ± 95) n·kg-1] and riparian zone[(837 ± 155) n·kg-1], which had stronger intensities of human activity, than that in woodland soil[(491 ± 53) n·kg-1] (P<0.05). Film and fragment microplastics mainly occurred in farmland soil, which also had the largest number of polymer types and the most abundant colors. ③ The risk index level of microplastics (Level Ⅲ) in the soil of farmland was higher than that of the other three land use patterns (Level Ⅰ). This research indicated that the higher the intensity of human activities of a sub-watershed was, the more complex the occurrence characteristics of soil microplastics, the richer the types of polymers, and the higher the potential pollution risks would be. Therefore, it is necessary to strengthen the control of soil microplastic pollution in farmland.

2.
Huan Jing Ke Xue ; 44(6): 3309-3320, 2023 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-37309949

RESUMO

Microplastics (MPs) are ubiquitous emerging pollutants that have been found in the marine, freshwater, air, and soil environments. Wastewater treatment plants (WWTPs) play an important role in releasing MPs to the environment. Therefore, understanding the occurrence, fate, and removal mechanism of MPs in WWTPs is of great importance towards microplastic control. In this review, the occurrence characteristics and removal rates of MPs in 78 WWTPs from 57 studies were discussed based on Meta-analysis. Specifically, the key aspects regarding MPs removal in WWTPs, such as wastewater treatment processes and MPs shapes, sizes, and polymer compositions were analyzed and compared. The results showed that:① the abundances of MPs in the influent and effluent were 1.56×10-2-3.14×104 n·L-1 and 1.70×10-3-3.09×102 n·L-1, respectively. The abundance of MPs in the sludge ranged from 1.80×10-1 to 9.38×103 n·g-1. ② The total removal rate (>90%) of MPs by WWTPs using oxidation ditch, biofilm, and conventional activated sludge treatment processes was higher than that using sequencing batch activated sludge, anaerobic-anoxic-aerobic, and anoxic-aerobic processes. ③ The removal rate of MPs in primary, secondary, and tertiary treatment process were 62.87%, 55.78%, and 58.45%, respectively. The combination process of "grid+ sedimentation tank+primary sedimentation tank" had the highest removal rate towards MPs in primary treatment processes, and the membrane bioreactor had the highest one beyond other secondary treatment processes. Filtration was the best process in tertiary treatment. ④ The film, foam, and fragment MPs were easier to remove (>90%) than fiber and spherical (<90%) MPs by WWTPs. The MPs with particle size larger than 0.5 mm were easier to remove than those with particle size smaller than 0.5 mm. The removal efficiencies of polyethylene (PE), polyethylene terephthalate (PET), and polypropylene (PP) MPs were higher than 80%.


Assuntos
Microplásticos , Plásticos , Esgotos , Biofilmes , Reatores Biológicos
3.
Huan Jing Ke Xue ; 42(7): 3166-3175, 2021 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-34212642

RESUMO

Microplastics have been found in many environmental media such as sea water, coastal tidal flats, terrestrial water, sediments, and organisms. Microplastics pollution in inland freshwater lakes have received extensive attention; however, the correlation between eutrophication and microplastics pollution in freshwater lakes remains unclear. In this study, 24 sampling sites were set up in the near shore surface waters of Dianchi Lake, and the pollution characteristics of microplastics such as abundance, composition, particle size, color, and form were evaluated. Water quality parameters related to eutrophication state were analyzed, and the eutrophication indices were further calculated. Specifically, sample pre-treatment was conducted according to the method issued by National Oceanic and Atmospheric Administration (NOAA) of the United States. The color and morphological characteristics of microplastic samples were observed using a stereoscopic microscope, and counts and particle size measurements were performed using Nano Measure 1.2 software. Parts of the samples were selected, and the polymer composition analysis was performed using micro-Fourier Transform infrared (µ-FTIR) spectroscopy. The indices related to eutrophication level evaluation were tested according to the experimental standard methods issued by the Ministry of Ecology and Environment of China. The results showed that the abundance of microplastics in the near shore waters of Dianchi Lake was between 800 and 6000 n·m-3, with an average value of 2867 n·m-3. The types of polymers detected were polyethylene terephthalate (PET), polyetherurethane (PEU), polypropylene (PP), polyethylene (PE), and polyvinyl acetate (PVAc), respectively. The diameter proportion of microplastics in the range of 0.2-0.5 mm was the highest. Fiber microplastics accounted for the most observed type, followed by fragments and films. Among the 24 monitoring sites, it was found that proportions of severe, moderate, and mild eutrophication and mesotrophication sites accounted for 8.33%, 58.33%, 29.17%, and 4.17% of the total sampling sites, respectively, and the main pollutant was total nitrogen (TN). Microplastics abundances in the near shore waters of Dianchi Lake were significantly positively correlated with TN concentrations (P<0.01), whereas they were negatively correlated with chlorophyll a(Chl-a)concentrations, not reaching a significant level (P>0.05). The microplastics abundance and TN concentrations in the north bank water near the main urban area of Kunming were significantly higher than those in the other three banks. Microplastics and TN were considered to potentially have the same origin and be attributed to the tail water discharge from WWTPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , China , Clorofila A , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos , Lagos/análise , Plásticos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...