Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(9): e202303298, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38050716

RESUMO

Theranostic nanomedicine combined bioimaging and therapy probably rises more helpful and interesting opportunities for personalized medicine. In this work, 177 Lu radiolabeling and surface PEGylation of biocompatible covalent polymer nanoparticles (CPNs) have generated a new theranostic nanoformulation (177 Lu-DOTA-PEG-CPNs) for targeted diagnosis and treatment of breast cancer. The in vitro anticancer investigations demonstrate that 177 Lu-DOTA-PEG-CPNs possess excellent bonding capacity with breast cancer cells (4T1), inhibiting the cell viability, leading to cell apoptosis, arresting the cell cycle, and upregulating the reactive oxygen species (ROS), which can be attributed to the good targeting ability of the nanocarrier and the strong relative biological effect of the radionuclide labelled compound. Single photon emission computed tomography/ computed tomography (SPECT/CT) imaging and in vivo biodistribution based on 177 Lu-DOTA-PEG-CPNs reveal that notable radioactivity accumulation at tumor site in murine 4T1 models with both intravenous and intratumoral administration of the prepared radiotracer. Significant tumor inhibition has been observed in mice treated with 177 Lu-DOTA-PEG-CPNs, of which the median survival was highly extended. More strikingly, 50 % of mice intratumorally injected with 177 Lu-DOTA-PEG-CPNs was cured and showed no tumor recurrence within 90 days. The outcome of this work can provide new hints for traditional nanomedicines and promote clinical translation of 177 Lu radiolabeled compounds efficiently.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Medicina de Precisão , Polímeros , Distribuição Tecidual , Linhagem Celular Tumoral , Radioisótopos/uso terapêutico , Lutécio/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/tratamento farmacológico
2.
Bioorg Med Chem ; 96: 117517, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939492

RESUMO

Recently, endoradiotherapy based on actinium-225 (225Ac) has attracted increasing attention, which is due to its α particles can generate maximal damage to cancer cells while minimizing unnecessary radiation effects on healthy tissues. Herein, 111In/225Ac-radiolabeled conjugated polymer nanoparticles (CPNs) coated with amphiphilic polymer DSPE-PEG-DOTA have been developed as a new injectable nano-radiopharmaceuticals for cancer endoradiotherapy under the guidance of nuclear imaging. Single photon emission computed tomography/computed tomography (SPECT/CT) using 111In-DOTA-PEG-CPNs as nano probe indicates a prolonged retention of radiolabeled nanocarriers, which was consistent with the in vivo biodistribution examined by direct radiometry analysis. Significant inhibition of tumor growth has been observed in murine 4T1 models treated with 225Ac-DOTA-PEG-CPNs when compared to mice treated with PBS or DOTA-PEG-CPNs. The 225Ac-DOTA-PEG-CPNs group experienced no single death within 24 days with the median survival considerably extended to 35 days, while all the mice treated with PBS or DOTA-PEG-CPNs died at 20 days post injection. Additionally, the histopathology studies demonstrated no obvious side effects on healthy tissues after treatment with 225Ac-DOTA-PEG-CPNs. All these results reveal that the new 225Ac-labeled DOTA-PEG-CPNs is promising as paradigm for endoradiotherapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Polímeros , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Linhagem Celular Tumoral
3.
ACS Appl Mater Interfaces ; 15(39): 45713-45724, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738473

RESUMO

Nano-metal-organic frameworks (nano-MOFs) labeled with radionuclides have shown great potential in the anticancer field. In this work, we proposed to combine fluorescence imaging (FI) with nuclear imaging to systematically evaluate the tumor inhibition of new nanomedicines from living cancer cells to the whole body, guiding the design and application of a high-performance anticancer radiopharmaceutical to glioma. An Fe-based nano-MOF vector, MIL-101(Fe)/PEG-FA, was decorated with fluorescent sulfo-cyanine7 (Cy7) to investigate the binding affinity of the targeting nanocarriers toward glioma cells in vitro, as well as possible administration modes for in vivo cancer therapy. Then, lutetium-177 (177Lu)-labeled MIL-101(Fe)/PEG-FA was prepared for high-sensitive imaging and targeted radiotherapy of glioma in vivo. It has been demonstrated that the obtained 177Lu-labeled MIL-101(Fe)/PEG-FA can work as a complementary probe to rectify the cancer binding affinity of the prepared nanocarrier given by fluorescence imaging, providing more precise biodistribution information. Besides, 177Lu-labeled MIL-101(Fe)/PEG-FA has excellent antitumor effect, leading to cell proliferation inhibition, upregulation of intracellular reactive oxygen species, tumor growth suppression, and immune response-related protein and cytokine upregulation. This work reveals that optical imaging and nuclear imaging can work complementarily as multimodal imaging in the design and evaluation of anticancer nanomedicine, offering a MIL-101(Fe)/PEG-FA-based pharmaceutical with potential in tumor endoradiotherapy.


Assuntos
Glioma , Estruturas Metalorgânicas , Humanos , Nanomedicina , Distribuição Tecidual , Imagem Multimodal , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico
4.
ACS Appl Mater Interfaces ; 15(13): 16343-16354, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947054

RESUMO

The combination of chemotherapy and phototherapy has received tremendous attention in multimodal cancer therapy. However, satisfactory therapeutic outcomes of chemo-photothermal therapy (chemo-PTT) still remain challenging. Herein, a biocompatible smart nanoplatform based on benzothiazole-linked conjugated polymer nanoparticles (CPNs) is rationally designed, for effectively loading doxorubicin (DOX) and Mo-based polyoxometalate (POM) through both dynamic chemical bond and intermolecular interactions, with an expectation to obtain new anticancer drugs with multiple stimulated responses to the tumor microenvironment (TME) and external laser irradiation. Controlled drug release of DOX from the obtained nanoformulation (CPNs-DOX-PEG-cRGD-BSA@POM) triggered by both endogenous stimulations (GSH and low pH) and exogenous laser irradiation has been well demonstrated by pharmacodynamics investigations. More intriguingly, incorporating POM into the nanoplatform not only enables the nanomedicine to achieve mild hyperthermia but also makes it exhibit self-assembly behavior in acidic TME, producing enhanced tumor retention. Benefiting from the versatile functions, the prepared CPNs-DOX-PEG-cRGD-BSA@POM exhibited excellent tumor targeting and therapeutic effects in murine xenografted models, showing great potential in practical cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Camundongos , Terapia Fototérmica , Polímeros , Doxorrubicina/química , Fototerapia , Neoplasias/patologia , Nanopartículas/química , Benzotiazóis , Microambiente Tumoral
5.
ChemMedChem ; 17(24): e202200480, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36220780

RESUMO

Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Humanos , Estruturas Metalorgânicas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Porosidade , Imagem Óptica , Corantes/uso terapêutico
6.
Mol Pharm ; 19(9): 3206-3216, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35993583

RESUMO

Targeted radionuclide therapy based on α-emitters plays an increasingly important role in cancer treatment. In this study, we proposed to apply a heterodimeric peptide (iRGD-C6-lys-C6-DA7R) targeting both VEGFR and integrins as a new vector for 211At radiolabeling to obtain high-performance radiopharmaceuticals with potential in targeted alpha therapy (TAT). An astatinated peptide, iRGD-C6-lys(211At-ATE)-C6-DA7R, was prepared with a radiochemical yield of ∼45% and high radiochemical purity of >95% via an electrophilic radioastatodestannylation reaction. iRGD-C6-lys(211At-ATE)-C6-DA7R showed good stability in vitro and high binding ability to U87MG (glioma) cells. Systematic in vitro antitumor investigations involving cytotoxicity, apoptosis, distribution of the cell cycle, and reactive oxygen species (ROS) clearly demonstrated that 211At-labeled heterodimeric peptides could significantly inhibit cell viability, induce cell apoptosis, arrest the cell cycle in G2/M phase, and increase intracellular ROS levels in a dose-dependent manner. Biodistribution revealed that iRGD-C6-lys(211At-ATE)-C6-DA7R had rapid tumor accumulation and fast normal tissue/organ clearance, which was mainly excreted through the kidneys. Moreover, in vivo therapeutic evaluation indicated that iRGD-C6-lys(211At-ATE)-C6-DA7R was able to obviously inhibit tumor growth and prolong the survival of mice bearing glioma xenografts without notable toxicity to normal organs. All these results suggest that TAT mediated by iRGD-C6-lys(211At-ATE)-C6-DA7R can provide an effective and promising strategy for the treatment of glioma and some other tumors.


Assuntos
Glioma , Integrinas , Animais , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Integrinas/metabolismo , Camundongos , Peptídeos/metabolismo , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Espécies Reativas de Oxigênio/uso terapêutico , Distribuição Tecidual
7.
Bioorg Med Chem ; 59: 116677, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220162

RESUMO

Vascular endothelial growth factor receptor (VEGFR) and integrin αv are over-expressed in angiogenesis of variety malignant tumors with key roles in angiogenesis, and have been proven as valuable targets for cancer imaging and treatment. In this study, a heterodimeric peptide targeting VEGFR and integrin was designed, and radiolabeled with zirconium-89 (89Zr) for PET imaging of glioma. 89Zr-DFO-heterodimeric peptide, a the newly developed probe, was prepared with radiochemical yield of 88.7 ± 2.4%. Targeted binding capability of 89Zr-DFO-heterodimeric peptide towards U87MG cells was investigated in murine glioma xenograft models, which shows that the designed probe has good binding ability to both targeting sites. Biodistribution indicated that kidney metabolism is the main pathway and tumor uptake of 89Zr-DFO-heterodimeric peptide reached the peak of 0.62 ± 0.10% ID/g . U87MG xenograft could be clearly visualized by microPET/CT imaging through 1 to 3 h post-injection of 89Zr-DFO-heterodimeric peptide. Importantly, the tumor radiouptake was significantly reduced after blocking, and the imaging effect of this radioactive compound was more obvious than that of monomeric peptide probes. 89Zr-DFO-heterodimeric peptide has been demonstrated to show potential as a new radiopharmaceutical probe towards glioma, and multi-target probes do have advantages in tumor imaging.


Assuntos
Glioma , Integrinas , Animais , Linhagem Celular Tumoral , Glioma/diagnóstico por imagem , Xenoenxertos , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Receptores de Fatores de Crescimento do Endotélio Vascular , Distribuição Tecidual , Fator A de Crescimento do Endotélio Vascular
8.
Chemistry ; 28(19): e202104589, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35174917

RESUMO

In past decades, nanoscale metal-organic frameworks (NMOFs) have drawn more and more attention in multimodal imaging and targeting therapy of various malignant cancers. Here, we proposed to dope 111 In into fluorescent In-based NMOFs (In-MIL-68-NH2 ), with an attempt to prepare a new nanomedicine with great anticancer potential. As a proof of concept, the obtained NMOF (In-MIL-68/PEG-FA) with targeting motifs is able to act as a fluorescent probe to achieve Hela cell imaging. Moreover, the Auger electron emitter 111 In built in corresponding radioactive NMOF (111 In-MIL-68/PEG-FA) can bring clear damage to cancer cells, leading to a high cell killing rate of 59.3 % within 48 h. In addition, the cell cycle presented a significant dose-dependent G2/M inhibiting mode, which indicates that 111 In-MIL-68/PEG-FA has the ability to facilitate the cancer cells to enter apoptotic program. This work demonstrated the potential of 111 In-labelled NMOFs in specific killings of cancer cells, providing a new approach to develop nanomedicines with theranostic function.


Assuntos
Antineoplásicos , Estruturas Metalorgânicas , Humanos , Antineoplásicos/farmacologia , Células HeLa , Nanomedicina
9.
Bioorg Med Chem ; 55: 116600, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999526

RESUMO

Glioma is the most common primary intracranial tumor without effective treatment. Positron emission tomography tracers labeled with 68Ga targeting fibroblast activation protein (FAP) have shown favorable characteristics in the diagnosis of glioma. However, to the best of our knowledge, FAP-targeted endoradiotherapy has never been explored in glioma. Hence, in this study, we investigated the therapeutic effect of 211At-labeled fibroblast activation protein inhibitor (FAPI) for glioma in vitro and in vivo. By astatodestannylation reaction, we prepared 211At-FAPI-04 with a radiochemical yield of 45 ± 6.7% and radiochemical purity of 98%. With good stability in vitro, 211At-FAPI-04 showed fast and specific binding to FAP-positive U87MG cells, and could significantly reduce the cell viability, arrested cell cycle at G2/M phase and suppressed cell proliferative efficacy. Biodistribution studies revealed that 6-fold higher accumulation in tumor sites was achieved by intratumoral injection in comparison with intravenous injection. In U87MG xenografts, 211At-FAPI-04 obviously suppressed the tumor growth and prolonged the median survival in a dose-dependent manner without obvious toxicity to normal organs. In addition, reduced proliferation and increased apoptosis were also observed after 211At-FAPI-04 treatment. All these results suggest that targeted alpha-particle therapy (TAT) mediated by 211At-FAPI-04 can provide an effective and promising strategy for the treatment of glioma.

10.
ACS Appl Mater Interfaces ; 11(50): 46696-46704, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31755689

RESUMO

Catalysts with high performance are urgently needed in order to accelerate the reaction kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in lithium-oxygen (Li-O2) batteries. Herein, utilizing thermodynamically metastable Ti atoms on the Ti3C2Tx MXene nanosheet surface as the nucleation site, oxygen vacancy-rich TiO2 nanoparticles were in situ fabricated on Ti3C2Tx nanosheets (V-TiO2/Ti3C2Tx) and used as the oxygen electrode of Li-O2 batteries. Oxygen vacancy (Vo) can boost the migration rate of electrons and Li+ as well as act as the active sites for catalyzing the ORR and OER. Based on the above merits, V-TiO2/Ti3C2Tx-based Li-O2 battery shows improved performance including the ultralow overpotential of 0.21 V, high specific capacity of 11 487 mA h g-1 at a current density of 100 mA g-1, and excellent round-trip efficiency (93%). This work proposes an effective strategy for researching high-performance oxygen electrodes for Li-O2 batteries via introducing Vo-rich oxides on two-dimensional MXene.

11.
ACS Appl Mater Interfaces ; 10(40): 34077-34086, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30207681

RESUMO

The structure and catalytic activity of the oxygen electrode determine the overall electrochemical performance of lithium-oxygen (Li-O2) batteries. Here, a three-dimensional (3D) porous interconnected network structure combined with ultrathin MoS2 nanosheets with homogeneously dispersed CNTs (MoS2/CNTs) was synthesized via a one-step hydrothermal reaction. The 3D interconnected architecture can efficiently promote the diffusion of O2 and Li ions as well as impregnation of electrolyte and provide more abundant storage space for the accommodation of discharge products, while the incorporation of uniformly dispersed CNTs improves the electronic conductivity and maintains the integrity of the cathode structure. Therefore, the Li-O2 battery based on MoS2/CNTs achieves improved performance with the low overpotentials (discharge/charge overpotentials of approximately 0.29 and 1.05 V), a high discharge specific capacity of 6904 mA h g-1 at a rate of 200 mA g-1, and excellent cycling stability (132 cycles). Experimental studies reveal that the improved electrochemical performance can be ascribed to the synergistic advantages of electronic conductive CNTs and excellent catalytic activity of the MoS2 nanosheets. Moreover, the unique 3D interconnected network structure can effectively facilitate fast charge transfer kinetics and a facile mass transport pathway. These encouraging performances demonstrate the metal sulfide catalyst as a promising catalytic material of oxygen electrodes for Li-O2 batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...