Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563613

RESUMO

Pueraria lobata is an important medicinal and edible homologous plant that is widely cultivated in Asian countries. However, its production and quality are seriously threatened by its susceptibility to pseudo-rust disease. The underlying molecular mechanisms are poorly known, particularly from a transcriptional perspective. Pseudo-rust disease is a major disease in pueraria, primarily caused by Synchytrium puerariae Miy (SpM). In this study, transcriptomic profiles were analyzed and compared between two pueraria varieties: the disease-resistant variety (GUIGE18) and the susceptible variety (GUIGE8). The results suggest that the number of DEGs in GUIGE18 is always more than in GUIGE8 at each of the three time points after SpM infection, indicating that their responses to SpM infection may be different, and that the active response of GUIGE18 to SpM infection may occur earlier than that of GUIGE8. A total of 7044 differentially expressed genes (DEGs) were identified, and 406 co-expressed DEGs were screened out. Transcription factor analysis among the DEGs revealed that the bHLH, WRKY, ERF, and MYB families may play an important role in the interaction between pueraria and pathogens. A GO and KEGG enrichment analysis of these DEGs showed that they were mainly involved in the following pathways: metabolic, defense response, plant hormone signal transduction, MAPK signaling pathway-plant, plant pathogen interaction, flavonoid biosynthesis, phenylpropanoid biosynthesis, and secondary metabolite biosynthesis. The CPK, CESA, PME, and CYP gene families may play important roles in the early stages after SpM infection. The DEGs that encode antioxidase (CAT, XDH, and SOD) were much more up-regulated. Defense enzyme activity, endogenous hormones, and flavonoid content changed significantly in the two varieties at the three infection stages. Finally, we speculated on the regulatory pathways of pueraria pseudo-rust and found that an oxidation-reduction process, flavonoid biosynthesis, and ABA signaling genes may be associated with the response to SpM infection in pueraria. These results expand the understanding of pueraria resistance and physiological regulations by multiple pathways.


Assuntos
Basidiomycota , Pueraria , Basidiomycota/genética , Resistência à Doença/genética , Flavonoides/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma
2.
BMC Plant Biol ; 22(1): 193, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410167

RESUMO

BACKGROUND: Hami melon (Cucumis melo var. saccharinus) is a popular fruit in China because of its excellent taste, which is largely determined by its physicochemical characteristics, including flesh texture, sugar content, aroma, and nutrient composition. However, the mechanisms by which these characteristics are regulated have not yet been determined. In this study, we monitored changes in the fruits of two germplasms that differed in physicochemical characteristics throughout the fruit development period. RESULTS: Ripe fruit of the bred variety 'Guimi' had significantly higher soluble sugar contents than the fruit of the common variety 'Yaolong.' Additionally, differences in fruit shape and color between these two germplasms were observed during development. Comparative transcriptome analysis, conducted to identify regulators and pathways underlying the observed differences at corresponding stages of development, revealed a higher number of differentially expressed genes (DEGs) in Guimi than in Yaolong. Moreover, most DEGs detected during early fruit development in Guimi were associated with cell wall biogenesis. Temporal analysis of the identified DEGs revealed similar trends in the enrichment of downregulated genes in both germplasms, although there were differences in the enrichment trends of upregulated genes. Further analyses revealed trends in differential changes in multiple genes involved in cell wall biogenesis and sugar metabolism during fruit ripening. CONCLUSIONS: We identified several genes associated with the ripening of Hami melons, which will provide novel insights into the molecular mechanisms underlying the development of fruit characteristics in these melons.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Frutas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Açúcares/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...