Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 247: 125794, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37442504

RESUMO

Colorectal cancer (CRC) is in the forefront of malignancies for its high incidence and mortality. 5-Fluorouracil (5-FU) is one of the most widely used effective drugs for the treatment of CRC. However, there is an urgent need in reducing its systemic side effects and chemoresistance, in order to make 5-FU-based chemotherapy more effective in the treatment of CRC. In this study, engineered CRC cells were established to overexpress miR-323a-3p, which was a tumor suppressor that targeted both EGFR and TYMS. Then miR-323a-3p-loaded exosomes (miR-Exo) were obtained with suitable methods of collection and purification. We found that miR-Exo significantly inhibited CRC cell proliferation and induced apoptosis by the way of targeting EGFR directly in the cells, which eventually led to desirable tumor regression in the cell derived xenograft (CDX) and patient derived xenograft (PDX) tumor mice models. Moreover, we discovered that miR-323a-3p released from miR-Exo directly inhibited the upregulation of thymidylate synthase (TYMS) induced by 5-FU-resistence in CRC cells, resulting in the revival of tumor cytotoxicity from 5-FU. MiR-Exo could effectively induce the CRC cell apoptosis by targeting EGFR and TYMS, and enhance the therapeutic effects of 5-FU on CRC. Our work demonstrates the potency of miR-Exo for advanced CRC biotherapy.


Assuntos
Neoplasias Colorretais , Exossomos , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , Exossomos/genética , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Front Microbiol ; 13: 980903, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060767

RESUMO

The current COVID-19 pandemic is motivating us to elucidate the molecular mechanism of SARS-CoV-2 invasion and find methods for decreasing its transmissibility. We found that SARS-CoV-2 could increase the protein level of ACE2 in mice. Folic acid and 5-10-methylenetetrahydrofolate reductase (MTHFR) could promote the methylation of the ACE2 promoter and inhibit ACE2 expression. Folic acid treatment decreased the binding ability of Spike protein, pseudovirus and inactivated authentic SARS-CoV-2 to host cells. Thus, folic acid treatment could decrease SARS-CoV-2 invasion and SARS-CoV-2-neutralizing antibody production in mice. These data suggest that increased intake of folic acid may inhibit ACE2 expression and reduce the transmissibility of SARS-CoV-2. Folic acid could play an important role in SARS-CoV-2 infection prevention and control.

3.
Biosens Bioelectron ; 211: 114372, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598554

RESUMO

The tissue inhibitor of metalloproteinases-1 (TIMP-1) protein can regulate the expression of certain proteases and microRNAs in cancer cells, and it is highly possible to diagnose cancers through analyzing the expression of TIMP-1 on exosomes. However, it is still a great challenge to obtain reliable physiological information on TIMP-1 by label-free method from exosomes in plasma. Here, we designed a porous-plasmonic SERS chip functionalized with synthesized CP05 polypeptide, which can specifically capture and distinguish exosomes from diverse origins. The SERS chip can accurately locate the plasmon in TIMP-1 protein to analyze the discrepancy of related fingerprint peaks of different exosomes. Based on the designed SERS chip, we successfully distinguished the lung and colon cancer cell-derived exosomes from normal exosomes at the single vesicle level by unique Raman spectroscopy and machine learning methods. This work not only provides a practical SERS chip for the application of Raman technology in human tumor monitoring and prognosis, but also provides a new idea for analyzing the feature of exosomes at the spectral level.


Assuntos
Técnicas Biossensoriais , Neoplasias do Colo , Exossomos , Neoplasias Pulmonares , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico , Exossomos/química , Humanos , Pulmão , Neoplasias Pulmonares/metabolismo , Análise Espectral Raman/métodos , Inibidor Tecidual de Metaloproteinase-1/análise , Inibidor Tecidual de Metaloproteinase-1/metabolismo
4.
Cell Death Dis ; 13(3): 256, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35319011

RESUMO

The rapid onset of resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) limits its clinical utility in colorectal cancer (CRC) patients, and pan-erb-b2 receptor tyrosine kinase (ErbB) treatment strategy may be the alternative solution. The aim of this study was to develop a possible microRNA multi-ErbB treatment strategy to overcome EGFR-TKI resistance. We detect the receptor tyrosine kinase activity in gefitinib-resistant colorectal cancer cells, ErbB3/EGFR is significantly activated and provides a potential multi-ErbB treatment target. MiR-323a-3p, a tumor suppressor, could target both ErbB3 and EGFR directly. Apoptosis is the miR-323a-3p inducing main biological process by functional enrichment analysis, and The EGFR and ErbB signaling are the miR-323a-3p inducing main pathway by KEGG analysis. MiR-323a-3p promotes CRC cells apoptosis by targeting ErbB3-phosphoinositide 3-kinases (PI3K)/PKB protein kinase (Akt)/glycogen synthase kinase 3 beta (GSK3ß)/EGFR-extracellular regulated MAP kinase (Erk1/2) signaling directly. And miR-323a-3p, as a multi-ErbBs inhibitor, increase gefitinib sensitivity of the primary cell culture from combination miR-323a-3p and gefitinib treated subcutaneous tumors. MiR-323a-3p reverses ErbB3/EGFR signaling activation in gefitinib-resistant CRC cell lines and blocks acquired gefitinib resistance.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , MicroRNAs , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Humanos , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
6.
ACS Nano ; 16(2): 3417-3431, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156370

RESUMO

The functional status of innate immune cells is a considerable determinant of effective antitumor immune response. However, the triple-negative breast cancer tumor microenvironment with high lactic acid metabolism and high antioxidant levels limits immune cell survival, differentiation, and function. Here, we determine that the tumor microenvironment-responsive nano-ultrasonic contrast agent Pt(IV)/CQ/PFH NPs-DPPA-1 boosts the ratio of mature dendritic cells (mDCs) and proinflammatory macrophages by reprogramming the metabolism of immature DCs (iDCs) and tumor-associated macrophages (TAMs). Specifically, platinum(IV) in cancer cells or iDCs was reduced to cisplatin, which can increase the intracellular content of ROS and therefore enhance the ratio of mDCs and apoptotic tumor cells. Meanwhile, chloroquine (CQ) released from nanoparticles (NPs) minimizes protective autophagy caused by cisplatin in tumor cells and reprograms the metabolism of TAMs to enhance the proportion of proinflammatory macrophages, achieving a superior synergistic effect of chemoimmunotherapy combined with Pt(IV) and anti-PD-L1 peptide (DPPA-1). Furthermore, perfluorohexane (PFH) in NPs realizes monitoring treatment corresponding to ultrasound. Collectively, the nano-ultrasonic contrast agent supports a candidate for monitoring treatment and augmenting antitumor chemoimmunotherapy by suppressing tumor cell autophagy and reprogramming immunocyte metabolism.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Autofagia , Linhagem Celular Tumoral , Meios de Contraste/farmacologia , Humanos , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
7.
Cell Death Dis ; 12(6): 618, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131101

RESUMO

Hepatocellular carcinoma (HCC) is a common and high-mortality cancer worldwide. Numerous microRNAs have crucial roles in the progression of different cancers. However, identifying the important microRNAs and the target biological function of the microRNA in HCC progression is difficult. In this study, we selected highly expressed microRNAs with different read counts as candidate microRNAs and then tested whether the microRNAs were differentially expressed in HCC tumour tissues, and we found that their expression was related to the HCC prognosis. Then, we investigated the effects of microRNAs on the cell growth and mobility of HCC using a real-time cell analyser (RTCA), colony formation assay and subcutaneous xenograft models. We further used deep-sequencing technology and bioinformatic analyses to evaluate the main functions of the microRNAs. We found that miR-103a was one of the most highly expressed microRNAs in HCC tissues and that it was upregulated in HCC tissue compared with the controls. In addition, high miR-103a expression was associated with poor patient prognosis, and its overexpression promoted HCC cell growth and mobility. A functional enrichment analysis showed that miR-103a mainly promoted glucose metabolism and inhibited cell death. We validated this analysis, and the data showed that miR-103a promoted glucose metabolism-likely function and directly inhibited cell death via ATP11A and EIF5. Therefore, our study revealed that miR-103a may act as a key mediator in HCC progression.


Assuntos
Carcinoma Hepatocelular , Glucose/metabolismo , Neoplasias Hepáticas , MicroRNAs/fisiologia , Animais , Metabolismo dos Carboidratos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...