Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 132718, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821786

RESUMO

The CO2-based reversible ionic liquid solution of 1,1,3,3-tetramethylguanidine (TMG) and ethylene glycol (EG) in dimethyl sulfoxide (DMSO) after capturing CO2, (2[TMGH]+[O2COCH2CH2OCO2]2-/DMSO (χRILs = 0.1), provides a sustainable and effective platform for cellulose dissolution and homogeneous utilization. Highly porous cellulose aerogel beads and monoliths were successfully prepared via a sol-gel process by extruding cellulose solution into different coagulation baths (NaOH aqueous solution or alcohols) and exposing the cellulose solution in open environment, respectively, and followed by different drying techniques, including supercritical CO2-drying, freeze-drying and air-drying. The effect of the coagulation baths and drying protocols on the multi-scale structure of the as-prepared cellulose aerogel beads and monoliths were studied in detail, and the sol-gel transition mechanism was also studied by the solvatochromic parameters determination. High specific surface area of 252 and 207 m2/g for aerogel beads and monoliths were achieved, respectively. The potential of cellulose aerogels in dye adsorption was demonstrated.

2.
Chemistry ; 29(38): e202300969, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37098764

RESUMO

Energy dissipation based on dynamic fracture of metal ligands is an effective way to toughen hydrogels for specific applications in biomedical and engineering fields. Exploration of new kinds of metal-ligand coordinates with robust bonding strength is crucial for the facile synthesis of tough gels. Here a hydrogel toughening strategy based on the formation of robust coordination complexes between the hydrazide ligands and zinc ions is reported. The resultant hydrogels exhibit high strength and toughness at room temperature. Their mechanical properties show temperature dependence due to the dynamic nature of coordination bonds. In addition, the amine group of hydrazides in the gel matrix provides a reactive site for Schiff's base reaction, enabling surface modification without influence on overall mechanical performances of the gel. The hydrazide ligands are easy to synthesize and can coordinate very well with several transition metals. Such a metal-ligand coordination should be suitable to develop tough soft materials with versatile applications.


Assuntos
Complexos de Coordenação , Hidrogéis , Hidrogéis/química , Ligantes , Hidrazinas , Metais , Zinco
3.
Int J Biol Macromol ; 237: 124218, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990419

RESUMO

Herein, a serial of full cellulose and lignosulfonate derivatives (LS), including sodium lignosulfonate (LSS), calcium lignosulfonate (LSC), lignosulfonic acid (LSA), composite films were generated through dissolving cellulose in reversible carbon dioxide (CO2) ionic liquids solvent system (TMG/EG/DMSO/CO2 solvent system), followed by a facile solution-gelation transition and absorption strategy. The findings indicated that LS aggregated and embedded inside the cellulose matrix via H-bond interaction. The cellulose/LS derivatives composite films showed good mechanical properties which the tensile strength reaches the maximum value of 94.7 MPa in MCC3LSS film. While for the MCC1LSS film, the breaking strain increases to 11.6 %. The outstanding UV shielding effect and high transmittance in the visible region of composite films were also achieved and the shielding performance of the whole UV region (200-400 nm) tended to 100 % for MCC5LSS film. In addition, thiol-ene click reaction was selected as model reaction to verify the UV-shielding performance. It was also found that the oxygen and water vapor barrier performances of composite films were evidently associated with the intense H-bond interaction and tortuous path effect. The OP and WVP of MCC5LSS film were 0 and 6 × 10-3 g·µm/m2·day·kPa, respectively. These outstanding properties make them with great potential for packaging field.


Assuntos
Celulose , Líquidos Iônicos , Celulose/química , Dióxido de Carbono , Solventes , Líquidos Iônicos/química
4.
Nat Commun ; 14(1): 236, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646676

RESUMO

Although two-dimensional (2D) materials have grown into an extended family that accommodates hundreds of members and have demonstrated promising advantages in many fields, their practical applications are still hindered by the lack of scalable high-yield production of monolayer products. Here, we show that scalable production of monolayer nanosheets can be achieved by a facile ball-milling exfoliation method with the assistance of viscous polyethyleneimine (PEI) liquid. As a demonstration, graphite is effectively exfoliated into graphene nanosheets, achieving a high monolayer percentage of 97.9% at a yield of 78.3%. The universality of this technique is also proven by successfully exfoliating other types of representative layered materials with different structures, such as carbon nitride, covalent organic framework, zeolitic imidazolate framework and hexagonal boron nitride. This scalable exfoliation technique for monolayer nanosheets could catalyze the synthesis and industrialization of 2D nanosheet materials.

5.
Int J Biol Macromol ; 230: 123182, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36623617

RESUMO

The design and facile preparation of water-soluble and eco-friendly polymer packaging membrane materials is a fascinating research topic, particularly in terms of the increasing concerns on potential microplastics pollution in ecosystem. In this study, taking advantages of the structural features of chitosan (CS) and betaine hydrochloride (BHC), fully bio-sourced and water-soluble poly(aprotic/protic ionic liquid)s (PAPILs) were successfully designed and prepared through the reaction of the amino groups in CS and carboxyl groups in BHC. The structure and thermo-properties of the PAPILs were elucidated by a series of characteristic methods. The rheological properties of the PAPILs aqueous solutions were also investigated. Moreover, water-soluble PAPILs membrane with a smooth surface morphology and a tensile strength of 62.9 MPa was successfully prepared. The PAPILs membrane also exhibited satisfactory biocompatibility, excellent antibacterial activities and high oxygen barrier property. Together with these outstanding material performance and functionality, as a "proof of concept", the potential use of the PAPILs membrane as water-soluble packaging material for laundry detergent capsule and pesticide was preliminarily demonstrated. These findings provide significant insights for the design of sustainable and functional packaging materials by using natural resources.


Assuntos
Quitosana , Líquidos Iônicos , Quitosana/química , Água/química , Ecossistema , Plásticos , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
6.
Small ; 17(41): e2103836, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514699

RESUMO

A simple and effective approach is demonstrated to fabricate tough metallosupramolecular hydrogel films of poly(acrylic acid) by one-pot photopolymerization of the precursor solution in the presence of Zr4+ ions that form coordination complexes with the carboxyl groups and serve as the physical crosslinks of the matrix. Both as-prepared and equilibrated hydrogel films are transparent, tough, and stable over a wide range of temperature, ionic strength, and pH. The thickness of the films can be easily tailored with minimum value of ≈7 µm. Owing to the fast polymerization and gelation process, kirigami structures can be facilely encoded to the gel films by photolithographic polymerization, affording versatile functions such as additional stretchability and better compliance of the planar films to encapsulate objects with sophisticated geometries that are important for the design of soft electronics. By stencil printing of liquid metal on the hydrogel film with a kirigami structure, the integrated soft electronics shows good compliance to cover curved surfaces and high sensitivity to monitor human motions. Furthermore, this strategy is applied to diverse natural and synthetic macromolecules containing carboxyl groups to develop tough hydrogel films, which will open opportunities for the applications of hydrogel films in biomedical and engineering fields.


Assuntos
Hidrogéis , Metilgalactosídeos , Eletrônica , Humanos , Impressão Tridimensional
7.
Int J Biol Macromol ; 180: 792-803, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872611

RESUMO

Facile preparation of functional hydrogel materials for environmental catalysis is a hot research topic of soft materials science and green catalysis. In this study, a carboxylcellulose hydrogel confined Fe3O4 nanoparticles composite catalyst (Fe3O4@CHC) with magnetic recyclability has been synthesized by taking the advantages of the newly developed cellulose solution in tetramethyl guanidine/DMSO/CO2 through in situ acylation using mixed cyclic anhydrides and ion exchange reaction. The achieved Fe3O4@CHC hydrogel catalyst was shown to be an more efficient and better Fenton-like catalyst for decomposition of the organic dye rhodamine B (RhB) in the presence of hydrogen peroxide, with almost complete decomposition occurring within 180 min, in comparison with Fe3O4@cellulose hydrogel (CH) with excellent recyclability. This work provided a facile strategy for the preparation of hydrogel-based functional composite green catalytic materials, which has potential applications in green catalysis.


Assuntos
Celulose/química , Compostos Férricos/química , Hidrogéis/química , Nanopartículas de Magnetita/química , Rodaminas/química , Catálise , Celulose/síntese química , Hidrogéis/síntese química , Peróxido de Hidrogênio/química , Ferro/química , Ferro/metabolismo , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Oxirredução , Rodaminas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química , Difração de Raios X
8.
Carbohydr Polym ; 241: 116343, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32507169

RESUMO

Recently, the growing environmental concerns and economic demands drive the need to develop effective solutions for the treatment of oily wastewater, especially for oil/water emulsions. In this work, hydroxyethyl cellulose (HEC) and poly(acrylic acid) (PAA) are selected to form a complex membrane on the surface of poly(ethylene terephthalate) (PET) nonwoven via layer-by-layer assembly for separation of water-in-oil emulsions. In order to obtain a hydrophobic surface, two post-treatment methods, thermally and chemically induced cross-linking, are applied to modify the hydrogen-bonded HEC/PAA complex membrane. The properties of the two treated HEC/PAA-PET membranes, including surface morphology, chemical structure, chemical composition, thermal stability, mechanical property, and membrane wettability are systematically studied and compared to each other. When the membranes are applied as oil filters to treat water-in-oil emulsions with different concentrations, both of the modified membranes show excellent separation efficiencies with a more than 99.4% rejection for all tested water-in-oil emulsions.


Assuntos
Resinas Acrílicas/química , Celulose/análogos & derivados , Emulsões/química , Filtração , Óleos/química , Águas Residuárias/química , Purificação da Água , Celulose/química , Membranas Artificiais , Água/química
9.
Polymers (Basel) ; 11(10)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569491

RESUMO

The complex aerogel generated from nano-polysaccharides, chitin nanocrystals (ChiNC) and TEMPO-oxidized cellulose nanofibers (TCNF), and its derivative cationic guar gum (CGG) is successfully prepared via a facile freeze-drying method with glutaraldehyde (GA) as cross-linkers. The complexation of ChiNC, TCNF, and CGG is shown to be helpful in creating a porous structure in the three-dimensional aerogel, which creates within the aerogel with large pore volume and excellent compressive properties. The ChiNC/TCNF/CGG aerogel is then modified with methyltrichlorosilane (MTCS) to obtain superhydrophobicity/superoleophilicity and used for oil-water separation. The successful modification is demonstrated through FTIR, XPS, and surface wettability studies. A water contact angle of 155° on the aerogel surface and 150° on the surface of the inside part of aerogel are obtained for the MTCS-modified ChiNC/TCNF/CGG aerogel, resulting in its effective absorption of corn oil and organic solvents (toluene, n-hexane, and trichloromethane) from both beneath and at the surface of water with excellent absorption capacity (i.e., 21.9 g/g for trichloromethane). More importantly, the modified aerogel can be used to continuously separate oil from water with the assistance of a vacuum setup and maintains a high absorption capacity after being used for 10 cycles. The as-prepared superhydrophobic/superoleophilic ChiNC/TCNF/CGG aerogel can be used as a promising absorbent material for the removal of oil from aqueous media.

10.
RSC Adv ; 9(59): 34486-34495, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-35529961

RESUMO

In order to further improve the performances of fabricated PVC/PVC-graft-poly(ethylene glycol) methyl ether methacrylate (PVC/PVC-g-PEGMA) blended membranes, we investigated the inner connections between affecting parameters during preparation and membrane performances. Two parameters including the composition of casting solutions and the solvent evaporation time were selected. In this study, PVC/PVC-g-PEGMA blended membranes were prepared by non-solvent induced phase separation (NIPS) using 1-methyl-2-pyrrolidinone (NMP) and tetrahydrofuran (THF) as mixing solvents. We found that (1) the membrane morphologies like surface pore size and porosity decreased as the ratio of THF to NMP increased, which resulted in the decrease in pure water flux and the increase of sodium alginate (SA) rejection ratio; (2) the presence of THF in the casting solution could significantly lower the membrane surface roughness compared to only using NMP as a solvent; (3) solvent evaporation for an appropriate time increased the hydrophilicity of the membrane. Among these findings, we achieved a membrane exhibiting the highest flux recovery ratio of 98.65 ± 0.85% with a mixing ratio of 1 : 9 (THF : NMP) at 60 s of evaporation time. High pollutant rejection and high flux recovery ratio were achieved. This study provides more insight into the PVC/PVC-g-PEGMA membrane and a more flexible approach to the application of PVC membranes.

11.
ACS Appl Mater Interfaces ; 7(25): 13996-4003, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26061028

RESUMO

A simple, rapid (10 s) and scalable method to fabricate superhydrophobic polypropylene (PP) fabrics is developed by swelling the fabrics in cyclohexane/heptane mixture at 80 °C. The recrystallization of the swollen macromolecules on the fiber surface contributes to the formation of submicron protuberances, which increase the surface roughness dramatically and result in superhydrophobic behavior. The superhydrophobic PP fabrics possess excellent repellency to blood, urine, milk, coffee, and other common liquids, and show good durability and robustness, such as remarkable resistances to water penetration, abrasion, acidic/alkaline solution, and boiling water. The excellent comprehensive performance of the superhydrophobic PP fabrics indicates their potential applications as oil/water separation materials, protective garments, diaper pads, or other medical and health supplies. This simple, fast and low cost method operating at a relatively low temperature is superior to other reported techniques for fabricating superhydrophobic PP materials as far as large scale manufacturing is considered. Moreover, the proposed method is applicable for preparing superhydrophobic PP films and sheets as well.


Assuntos
Polipropilenos/química , Têxteis , Cicloexanos , Hexanos , Interações Hidrofóbicas e Hidrofílicas , Óleos , Solventes
12.
J Am Chem Soc ; 132(29): 10064-9, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20590113

RESUMO

A hydrogel with cylindrically symmetric structure at macroscopic scale has been developed by polymerization of a cationic monomer in the presence of a small amount of semi-rigid polyanion poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) in a cylinder glass tube. The polyion complex radially aligns in the outer region of the synthesized cylinder gel. On the other hand, it orients in concentric and axial directions in the inner region. To the authors' knowledge, this is the first report of such millimeter-scale ordered structure developed in a polymeric hydrogel. We elucidate that homeotropic alignment on the glass wall is energetically favorable for the semi-rigid polyion complex, resulting in the radial orientation in the outer region. In the inner region, the oriented structures result from the monomer difffusion (due to the heterogeneous polymerization) that induces PBDT orientation perpendicular to the diffusion direction. The structured gels showing sensitive response of birefringence to external force are expected to find applications in optical sensors.


Assuntos
Hidrogéis/química , Ftalimidas/química , Polímeros/química , Birrefringência , Vidro/química , Microscopia , Processos Fotoquímicos , Soluções
13.
Chem Commun (Camb) ; (48): 7518-20, 2009 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-20024265

RESUMO

Ultrathin double-network hydrogels, which have super-high toughness under micro-scale thickness (elastic elongation epsilon(b) > 1000%, tensile strength sigma(b) > 2 MPa and tearing energy G approximately 600 J m(-2)), and solvent-triggered fast and high isometric stress generation, were synthesized by coupling the salt-controlled swelling process and polymer chain pre-reinforced technique.


Assuntos
Hidrogéis/química , Solventes/química , Elasticidade , Músculo Esquelético/química , Polímeros/química , Sais/química
14.
J Phys Chem B ; 113(17): 5823-8, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19344170

RESUMO

This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m

15.
ChemSusChem ; 1(6): 558-63, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18702155

RESUMO

Cellulose gel membranes have been prepared by a pre-gelation method employing cellulose solutions in aqueous NaOH-thiourea obtained at low temperature. The cellulose gels were then swollen by low-molecular-weight polyethylene glycol (PEG; MW<1000 g mol(-1)), and the morphology, structure and mechanical properties of the cellulose/PEG gels were studied by various techniques. The gels exhibit high mechanical performance, and the tensile strength of the gel membranes increases sharply with an increase in the molecular weight of PEG from 200 to 800 g mol(-1). Moreover, their elongation at break remains stable at 100 %. PEG800 efficiently improves the optical transmittance of the gel membranes at ambient temperature, which is about five times greater than that of a normal cellulose hydrogel membrane. A strong hydrogen-bonding interaction occurs between PEG and cellulose leading to a homogeneous structure, high mechanical strength and good transparency of the gel membranes.


Assuntos
Celulose/química , Géis/química , Polietilenoglicóis/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Análise Espectral Raman , Relação Estrutura-Atividade , Difração de Raios X
16.
Chemphyschem ; 8(6): 899-905, 2007 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-17366510

RESUMO

Herein, we report a special poly(vinyl alcohol)/dimethylsulfoxide (PVA/DMSO) gel electromechanical system with great self-governed capability. The system is operated in air by applying a noncontacted DC electric field. When the applied electric field exceeds a certain critical value, the gel exhibits fast and self-governing locomotion on the gradiently charged glass substrate. In contrast to field-controlled gel systems developed earlier, the crawling direction of the gel is independent of the direction of the applied electric field and can be actively controlled. The maximum crawling velocity can reach 3.22 mm s(-1), which is much larger than that of the actuators described earlier. Furthermore, some factors that influence the critical driving electric field and the average crawling speed of the gel were studied. The mechanism analysis indicates that, the self-governing linear motion of the gel is due to the spatially and temporally varying electrostatic interaction between the gel and the applied electric field in response to the gradient change of the charge density and the charge polarity on the substrate.

17.
J Phys Chem B ; 111(5): 941-5, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17266246

RESUMO

A novel approach based on electrohydrodynamic behavior of a dielectric liquid pattern in electric field was developed to fabricate a poly(vinyl alcohol)/dimethyl sulfoxide (PVA/DMSO) gel electromechanical system. Driving experiments indicate that this system could be well-operated in air by using a direct current (DC) electric field, and the gel exhibits a long-range path-controlled snaillike or snakelike motion with a fast crawling speed of 14.4 mm/s. Some factors, such as the applied electric field and the mass of the gel on the average crawling speed of the gel at linear path and curvilinear path, are investigated. Furthermore, a transition between snaillike gaits and snakelike gaits of the gel is also further studied in this system. The mechanism analysis suggests that this path-controlled motion of the gel arises from the drag of the spatial varied shear force F originated from the electrohydrodynamic flow of the solvent in and out of the gel.


Assuntos
Álcool de Polivinil/química , Ar , Dimetil Sulfóxido/química , Eletroquímica , Géis/química
18.
J Control Release ; 115(2): 189-96, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16996163

RESUMO

The accurate knowledge of the diffusion behavior of protein within biomimetic hydrogel matrix at body temperature has a great implication for the design of efficient controlled release protein-base drug delivery devices. In this paper, we improved our previous in situ refractive index method with great temperature-controlled capability. For the first time, this newly improved method was employed to study the diffusion of protein (bovine serum albumin (BSA) and lysozyme) in agarose hydrogel at body temperature (37 degrees C). The change of the gel refractive index caused by the change of the diffusing protein concentration within the gel during the diffusion process enables the effective diffusion coefficients of protein to be estimated. The diffusion coefficients of proteins decrease with the increase of the concentration of agarose and the solute molecular size. At the considered range of agarose concentration (0.5-3.0 wt.%), the diffusion coefficients range from 4.98 to 8.21 x 10(-7) cm(2)/s for BSA and 1.15 to 1.56 x 10(-6) cm(2)/s for lysozyme, respectively. Temperature dependence of diffusivity of BSA in agarose hydrogel was also investigated. Furthermore, the retardance effect of polymer volume fraction on the diffusivity of both BSA and lysozyme in agarose hydrogels was analyzed with three models, Amsden's, Clauge and Philips', and Ogsten's model.


Assuntos
Proteínas/química , Refratometria , Algoritmos , Difusão , Hidrogéis , Modelos Estatísticos , Muramidase/química , Sefarose , Soroalbumina Bovina , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...