Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 48(4): 385-91, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37186204

RESUMO

OBJECTIVE: To investigate the location and anatomical structure of "Shaochong"(HT9), "Shaofu"(HT8), "Shenmen"(HT7), "Lingdao"(HT4) and "Shaohai"(HT3) in the rabbit's forelimb. METHODS: Sixteen rabbits (half male and half female) were used in the present study. By referring to the national standards on the location of acupoints in the human body and the literature about the location of acupoints in the rabbit, and by using the method of comparative anatomy, the location and needling operation of the Five-shu acupoints of Shaoyin Heart Meridian on the rabbit's forelimb were defined, and these acupoints were needled and CT three-dimensional reconstruction were conducted. Then, the rabbits were killed, and intravascular perfusion was performed, followed by inserting acupuncture needles into these five acupoints for observing the anatomical relationship between the inserted acupuncture needle and the structure of surrounding tissues. RESULTS: HT9 is located at the medial side of the little finger of forelimb, about 1 mm beside the nail root, and is adjacent to the superficial flexor tendon of the finger, the dorsal branches of the proper palmar digital artery and vein, and the endings of dorsal branch of palmar digital proper nerve of the ulnar nerve on the fifth finger side. HT8 is located at the palm side of the forelimb, horizontally parallel to the proximal end of the 5th metacarpophalangeal joint and between the 4th and 5th metacarpal bones, and is adjacent to the lumbricalis, the 4th and 5th interossei, and common palmar digital artery and vein and the palmar digital proper nerve of the ulnar nerve. HT7 is located at the medial margin of the extensor carpal tendon on the ulnar side, between the distal end of the ulna and the ulnar carpal bone, and is adjacent to the tendons of flexor carpi ulnaris and extensor carpi ulnaris, ulnar artery, ulnar vein and ulnar nerve. HT4 is located at the medial border of the ulnar flexor tendon, about 1.5 cun superior to HT7, and is adjacent to extensor carpi ulnaris, flexor carpi ulnaris, flexor digitorum superficialis, flexor digitorum profundus, ulnar artery, vein and ulnar nerve. HT3 is located at the depression, medial to the condyle of humerus when the elbow is bent at 90°, its neighbor structure is composed of pronator teres, biceps brachii, brachial artery and vein, radial collateral artery, radial collateral vein, medial antebrachial cutaneous nerve and median nerve. CONCLUSION: In the rabbit, there is a close relationship between HT9, HT8, HT7, HT4 and HT3 regions and brachial vascular and its branches, cephalic vein and its branches, medial antebrachial cutaneous nerve, median nerve and ulnar nerve, which is the morphological basis of the Five-shu acupoints of Shaoyin Heart Meridian for treating some related clinical disorders.


Assuntos
Meridianos , Animais , Coelhos , Masculino , Feminino , Humanos , Pontos de Acupuntura , Imageamento Tridimensional , Membro Anterior/diagnóstico por imagem , Membro Anterior/anatomia & histologia , Tomografia Computadorizada por Raios X
2.
Molecules ; 28(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241776

RESUMO

Oily sludge, as a critical hazardous waste, requires appropriate treatment for resource recovery and harmfulness reduction. Here, fast microwave-assisted pyrolysis (MAP) of oily sludge was conducted for oil removal and fuel production. The results indicated the priority of the fast MAP compared with the MAP under premixing mode, with the oil content in solid residues after pyrolysis reaching below 0.2%. The effects of pyrolysis temperature and time on product distribution and compositions were examined. In addition, pyrolysis kinetics can be well described using the Kissinger-Akahira-Sunose (KAS) and the Flynn-Wall-Ozawa (FWO) methods, with the activation energy being 169.7-319.1 kJ/mol in the feedstock conversional fraction range of 0.2-0.7. Subsequently, the pyrolysis residues were further treated by thermal plasma vitrification to immobilize the existing heavy metals. The amorphous phase and the glassy matrix were formed in the molten slags, resulting in bonding and, hence, immobilization of heavy metals. Operating parameters, including working current and melting time, were optimized to reduce the leaching concentrations of heavy metals, as well as to decrease their volatilization during vitrification.

3.
RSC Adv ; 9(45): 25967-25975, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35530987

RESUMO

The degradation of methylene blue (MB) using a novel dielectric barrier discharge plasma reactor coupled with activated carbon supported polyurethane foam (AC/PUF) was investigated in this paper. The plasma reactor combining a glass bead-packed bed and a microporous plate was developed. The AC/PUF provided sufficient contact area between carbon media and pollutants and hence revealed a good MB removal capacity. The effects of input voltage and initial MB solution concentration on MB degradation efficiency were examined. Kinetic study indicated that plasma and AC/PUF in the coupled system had a good synergistic effect in MB degradation. The degradation efficiency of 100 ppm MB solution could reach 97.9% with 10 min treatment in the coupled system, which was close to that obtained by plasma treatment alone for 30 min (97.5%). The COD removal in the plasma and AC/PUF coupled system (90.7%) was much higher than that obtained by plasma treatment followed by AC/PUF adsorption (58.3%). In addition, the energy yield (G 50) of the coupled system was up to 38.3 g kW-1 h-1, suggesting great energy efficiency of the system. Moreover, repeated use experiments of AC/PUF showed the good utilization potential of the coupled system. Finally, a possible degradation pathway of MB was proposed.

4.
Environ Sci Technol ; 47(14): 7934-9, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23772855

RESUMO

The technology of packed bed dielectric barrier discharge (DBD) plasma followed by a chemical absorption has been developed and was found to be an efficient way for decomposition treatment of sulfuryl fluoride (SO2F2) in simulated residual fumigant. The effects of energy density, initial SO2F2 concentration, and residence time on the removal efficiency of SO2F2 for the DBD plasma treatment alone were investigated. It was found that the SO2F2 could be removed completely when initial volume concentration, energy density, and residence time were 0.5%, 33.9 kJ/L, and 5.1 s, respectively. The removal mechanism of SO2F2 in the packed bed DBD reactor was discussed. Based on the detailed analysis of SO2F2 molecular stability and its exhaust products in the DBD plasma reactor, it was concluded that the energetic electrons generated in the packed bed DBD reactor played a key role on the removal of SO2F2, and the major decomposition products of SO2F2 detected were SO2, SiF4, and S (Sulfur). Among these products, SiF4 was formed by the F atom reacted with the filler-quartz glass beads (SiO2) in the packed bed DBD reactor. Aqueous NaOH solution was used as the chemical absorbent for the gaseous products of SO2F2 after plasma pretreatment. It was found that the gaseous products in the plasma exhaust could be absorbed and fixed by the subsequent aqueous NaOH solution.


Assuntos
Ácidos Sulfínicos/química , Absorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...