Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312812, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839075

RESUMO

High-performance lithium metal anodes are crucial for the development of advanced Li metal batteries. Herein, this work reports a novel plasma coupled electrolyte additive strategy to prepare high-quality composite solid electrolyte interphase (SEI) on Li metal to achieve enhanced performance and stability. With the guidance of calculations, this work selects diethyl dibromomalonate (DB) as an additive to optimize the solvation structure of electrolytes to modify the SEI. Meanwhile, this work groundbreakingly develops DB plasma technology coupled with DB electrolyte additive to construct a combinatorial SEI: inner plasma-induced SEI layer composed of LiBr and Li2CO3 plus additive-reduced SEI containing LiBr/Li2CO3/organic lithium compounds as an outer compatible layer. The optimized hybrid SEI has strong affinity toward Li+ and good mechanical properties, thereby inducing horizontal dispersion and uniform deposition of Li+ and keep structure stable. Accordingly, the symmetrical cells exhibit enhanced cycling stability for 1200 h at an overpotential of 23.8 mV with average coulombic efficiency (99.51%). Additionally, the full cells with LiNi0.8Co0.1Mn0.1O2 cathode deliver a capacity retention of 81.7% after 300 cycles at 0.5 C, and the pouch cell achieves a volumetric specific energy of ≈664 Wh L‒1. This work provides new enlightenment on plasma technology for fabrication of advanced metal anodes for energy storage.

2.
Org Biomol Chem ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38912549

RESUMO

8-oxoguanine (o8G), a prevalent oxidative modification in RNA induced by reactive oxygen species (ROS), plays a pivotal role in regulating RNA functions. Accurate detection and quantification of o8G modifications is critical to understanding their biological significance and potential as disease biomarkers, but effective detection methods remain limited. Here, we have developed a highly specific T3 DNA ligase-dependent qPCR assay that exploits the enzyme's ability to discriminate o8G from guanine (G) with single-nucleotide resolution. This method can detect o8G in RNA at levels as low as 500 fM, with an up to 18-fold higher selectivity for discriminating o8G from G. By simulating oxidative stress conditions in SH-SY5Y and HS683 cell lines treated with rotenone, we successfully identified site-specific o8G modifications in key miRNAs associated with neuroprotective responses, including miR-124, let-7a and miR-29a. The developed assay holds significant promise for the practical identification of o8G, facilitating its potential for detailed studies of o8G dynamics in various biological contexts and diseases.

3.
Small ; : e2401491, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751305

RESUMO

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

4.
Insects ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535385

RESUMO

Neoseiulus bicaudus is a predatory mite species that could potentially be used for the biological control of spider mites and thrips. Floral resources can provide excellent habitats and abundant nutrients for natural enemies. The objective of this experiment was to evaluate the effects of eight floral resources on the longevity, fecundity, and predation ability of N. bicaudus. Among the considered plants, Cnidium monnieri led to the highest longevity (24 days) and fecundity (13.8 eggs) of N. bicaudus, while Tagetes erecta resulted in the lowest longevity (7 days) and fecundity (0.1 eggs) observed in the predatory mites. By comparing the effects of three nectar and pollen plants on the predation of predatory mites, it was observed that N. bicaudus still exhibited a type II functional response to Tetranychus turkestani. In the presence of pollen, the predation efficacy (a/Th) of N. bicaudus exhibited a lower value, compared to that in the absence of pollen (Control: a/Th = 24.00). When pollen was supplied, the maximum consumption (1/Th) of predatory mites was higher than in its absence (Control: 1/Th = 9.90 d-1), with the highest value obtained in the presence of B. officinalis pollen (B. officinalis: 1/Th = 17.86 d-1). The influence coefficient of predation of N. bicaudus on T. turkestani in the presence of pollen was compared in the presence of three nectar and pollen plants: Cnidium monnieri, Centaurea cyanus, and Borago officinalis. At low prey densities, the influence coefficient of C. cyanus exceeded that of B. officinalis, and the overall influence coefficient values were negative (i.e., the presence of pollen reduced predatory mite feeding on T. turkestani). They exhibited similar values at high prey densities, and all of the influence coefficient values were close to 0 (i.e., the presence of pollen had no effect on predatory mite feeding on T. turkestani). The findings revealed that diverse plant species exert differential impacts on N. bicaudus, with some influencing its lifespan and others affecting its reproductive capabilities. Furthermore, the presence of nectar and pollen plants had a significant impact on predatory mite feeding on T. turkestani at low prey densities; however, this effect diminished as the prey density increased. Therefore, we recommend planting C. monnieri, C. cyanus, and B. officinalis in the field to ensure an ample population of predatory mites. The obtained results hold significant implications for the utilization of nectar and pollen plants in eco-friendly pest management strategies within agricultural contexts.

5.
Adv Mater ; 36(24): e2400245, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377331

RESUMO

The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.

6.
Chemistry ; 30(19): e202304168, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38264940

RESUMO

"Carbon Peak and Carbon Neutrality" is an important strategic goal for the sustainable development of human society. Typically, a key means to achieve these goals is through electrochemical energy storage technologies and materials. In this context, the rational synthesis and modification of battery materials through new technologies play critical roles. Plasma technology, based on the principles of free radical chemistry, is considered a promising alternative for the construction of advanced battery materials due to its inherent advantages such as superior versatility, high reactivity, excellent conformal properties, low consumption and environmental friendliness. In this perspective paper, we discuss the working principle of plasma and its applied research on battery materials based on plasma conversion, deposition, etching, doping, etc. Furthermore, the new application directions of multiphase plasma associated with solid, liquid and gas sources are proposed and their application examples for batteries (e. g. lithium-ion batteries, lithium-sulfur batteries, zinc-air batteries) are given. Finally, the current challenges and future development trends of plasma technology are briefly summarized to provide guidance for the next generation of energy technologies.

7.
Small ; 20(16): e2307579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044290

RESUMO

The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.

8.
Small ; 20(15): e2306381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013253

RESUMO

All-solid-state lithium metal batteries (LMBs) are regarded as one of the most viable energy storage devices and their comprehensive properties are mainly controlled by solid electrolytes and interface compatibility. This work proposes an advanced poly(vinylidene fluoride-hexafluoropropylene) based gel polymer electrolyte (AP-GPEs) via functional superposition strategy, which involves incorporating butyl acrylate and polyethylene glycol diacrylate as elastic optimization framework, triethyl phosphate and fluoroethylene carbonate as flameproof liquid plasticizers, and Li7La3Zr2O12 nanowires (LLZO-w) as ion-conductive fillers, endowing the designed AP-GPEs/LLZO-w membrane with high mechanical strength, excellent flexibility, low flammability, low activation energy (0.137 eV), and improved ionic conductivity (0.42 × 10-3 S cm-1 at 20 °C) due to continuous ionic transport pathways. Additionally, the AP-GPEs/LLZO-w membrane shows good safety and chemical/electrochemical compatibility with the lithium anode, owing to the synergistic effect of LLZO-w filler, flexible frameworks, and flame retardants. Consequently, the LiFePO4/Li batteries assembled with AP-GPEs/LLZO-w electrolyte exhibit enhanced cycling performance (87.3% capacity retention after 600 cycles at 1 C) and notable high-rate capacity (93.3 mAh g-1 at 5 C). This work proposes a novel functional superposition strategy for the synthesis of high-performance comprehensive GPEs for LMBs.

9.
Small ; 18(7): e2106074, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862735

RESUMO

Nickel sulfides with high theoretical capacitance have aroused tremendous attention for next-generation supercapacitors. Unfortunately, the structural durability of nickel sulfides is insufficient to support the long-term working situation. Herein, Ni3 S4-x hollow microspheres with sulfur vacancies (Ni3 S4-x HMs) are constructed by a liquid-phase anion exchange process using the Ni-MOF as the precursor. Both experimental investigation and theoretical analysis suggest that the deliberately introduced sulfur vacancies effectively improve the anionic adsorptive ability of nickel sulfides in the KOH electrolyte, significantly enhancing the reversible capacitance and structural durability (1884 F g-1 at 2 A g-1 , capacity retention of 97.9% after 10 000 cycles). In addition, an asymmetrical solid-state supercapacitor consisting of Ni3 S4-x HMs cathode and activated carbon anode shows infusive energy/power density (33.05 Wh kg-1 /1.68 kW kg-1 ) and remains 82.4% over 10 000 repeated charging/discharging processes in the KOH-PVA gel electrolyte. The strategies can be developed to enlighten the structural design of various metal sulfides materials adopted in electrochemical energy storage devices including alkali ion batteries, supercapacitors, and electrocatalysts.

10.
Small ; 16(37): e2003434, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32776499

RESUMO

Tailored construction of advanced flexible supercapacitors (SCs) is of great importance to the development of high-performance wearable modern electronics. Herein, a facile combined wet chemical method to fabricate novel mesoporous vanadium nitride (VN) composite arrays coupled with poly(3,4-ethylenedioxythiophene) (PEDOT) as flexible electrodes for all-solid-state SCs is reported. The mesoporous VN nanosheets arrays prepared by the hydrothermal-nitridation method are composed of cross-linked nanoparticles of 10-50 nm. To enhance electrochemical stability, the VN is further coupled with electrodeposited PEDOT shell to form high-quality VN/PEDOT flexible arrays. Benefiting from high intrinsic reactivity and enhanced structural stability, the designed VN/PEDOT flexible arrays exhibit a high specific capacitance of 226.2 F g-1 at 1 A g-1 and an excellent cycle stability with 91.5% capacity retention after 5000 cycles at 10 A g-1 . In addition, high energy/power density (48.36 Wh kg-1 at 2 A g-1 and 4 kW kg-1 at 5 A g-1 ) and notable cycling life (91.6% retention over 10 000 cycles) are also achieved in the assembled asymmetric flexible supercapacitor cell with commercial nickel-cobalt-aluminum ternary oxides cathode and VN/PEDOT anode. This research opens up a way for construction of advanced hybrid organic-inorganic electrodes for flexible energy storage.

11.
RSC Adv ; 10(53): 31773-31779, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35518162

RESUMO

Lithium-sulfur (Li-S) batteries with their outstanding theoretical energy density are strongly considered to take over the post-lithium ion battery era; however, they are limited by sluggish reaction kinetics and the severe shuttling of soluble lithium polysulfides. Prussian blue analogues (PBs) have demonstrated their efficiency in hindering the shuttle effects as host materials of sulfur; unfortunately, they show an inferior electronic conductivity, exhibiting considerable lifespan but poor rate performance. Herein, we rationally designed a PB@reduced graphene oxide as the host material for sulfur (S@PB@rGO) hybrids via a facile liquid diffusion and physical absorption method, in which the sulfur was integrated into Na2Co[Fe(CN)6] and rGO framework. When employed as a cathode, the as-prepared hybrid exhibited excellent rate ability (719 mA h g-1 at 1C) and cycle stability (918 mA h g-1 at 0.5C after 100 cycles). The improved electrochemical performance was attributed to the synergetic effect of PB and conductive rGO, which not only enhanced the physisorption of polysulfides but also provided a conductive skeleton to ensure rapid charge transfer kinetics, achieving high energy/power outputs and considerable lifespan simultaneously. This study may offer a new method manufacturing high performance Li-S batteries.

12.
Nanotechnology ; 30(48): 484001, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31430739

RESUMO

The tailored construction of non-noble metal bifunctional electrocatalysts for high-efficiency oxygen/hydrogen evolution reactions (OER/HER) is vital for the development of electrochemical energy conversion. Herein, we report a powerful combined wet chemical method to fabricate a novel binder-free NiFe layered double hydroxide@Ni3S2 (NiFe LDH@Ni3S2) heterostructure as an efficient bifunctional electrocatalyst for overall water splitting. The hydrothermal-synthesized NiFe LDH nanosheets are uniformly coated on the Ni3S2 nanosheet skeleton forming 3D porous heterostructure arrays. By virtue of its synergistic advantages, including its binder-free characteristics, increased catalysis sites and structural stability, the as-obtained NiFe LDH@Ni3S2/NF electrode exhibits low overpotentials of 184 and 271 mV at 20 mA cm-2 for HER and OER in 1 M KOH, respectively. Notably, a low operation potential of 1.74 V at a current density of 20 mA cm-2 is achieved for overall water splitting with a stable cycling life. In addition, the intimate composite structure and sensitive interface of NiFe LDH@Ni3S2 are responsible for the good electrocatalytic activity with a low Tafel slope, fast reaction kinetics and high stability. The versatile fabrication protocol and heterostructure interface engineering provide a new way to construct other bifunctional and cost-effective electrocatalysts for electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...