Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(26): 6852-6858, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38917304

RESUMO

The emergent nanofluidic memristor provides a promising way of emulating neuromorphic functions in the brain. The conical-shaped nanopore showed promising features for a nanofluidic memristor, inspiring us to investigate the memory effects in asymmetrically charged nanochannels due to their high current rectification, which may result in good memory effects. Here, the memory effects of an asymmetrically charged nanofluidic channel were numerically simulated by Poisson-Nernst-Planck equations. Our results showed that the I-V curves represented a diode in low scanning frequency and then became a memristor and finally a resistor as frequency increased. We successfully replicated the learning behavior in our system with history-dependent ion redistribution in the nanochannel. Some critical factors were quantitatively analyzed for the memory effects including voltage amplitude, optimal frequency, and Dukhin number. Experimental characterizations were also carried out. Our findings are useful for the design of nanofluidic memristors by the principle of enrichment and depletion as well as the determination of the best memory settings.

2.
Nano Lett ; 23(24): 11662-11668, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064458

RESUMO

The emergence of nanofluidic memristors has made a giant leap to mimic the neuromorphic functions of biological neurons. Here, we report neuromorphic signaling using Angstrom-scale funnel-shaped channels with poly-l-lysine (PLL) assembled at nano-openings. We found frequency-dependent current-voltage characteristics under sweeping voltage, which represents a diode in low frequencies, but it showed pinched current hysteresis as frequency increases. The current hysteresis is strongly dependent on pH values but weakly dependent on salt concentration. We attributed the current hysteresis to the entropy barrier of PLL molecules entering and exiting the Angstrom channels, resulting in reversible voltage-gated open-close state transitions. We successfully emulated the synaptic adaptation of Hebbian learning using voltage spikes and obtained a minimum energy consumption of 2-23 fJ in each spike per channel. Our findings pave a new way to mimic neuronal functions by Angstrom channels in low energy consumption.

3.
Int J Cancer ; 111(4): 484-93, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15239124

RESUMO

The human lung carcinoma cell line DLKP was exposed to sequential pulses of 10 commonly used chemotherapeutic drugs (VP-16, vincristine, taxotere, mitoxantrone, 5-fluorouracil, methotrexate, CCNU, BCNU, cisplatin and chlorambucil); resulting cell lines exhibited resistance to the selecting agents (ranging approx. 1.5- to 36-fold) and, in some cases, cross-resistance to methotrexate (approx. 1.4- to 22-fold), vincristine (1.6- to 262-fold), doxorubicin (Adriamycin, approx. 1.1- to 33-fold) and taxotere (approx. 1.1- to 36-fold). Several of the variants displayed collateral sensitivity to cisplatin. A marked increase in in vitro invasiveness and motility was observed with variants pulsed with mitoxantrone, 5-fluorouracil, methotrexate, BCNU, cisplatin and chlorambucil. There was no significant change in invasiveness of cells pulsed with VP-16, vincristine, taxotere or CCNU. All of the pulse-selected variants showed elevated levels of MDR-1/P-gp protein by Western blot analysis, although mdr-1 mRNA levels were not increased (except for DLKP-taxotere). In DLKP-taxotere, MRP1 protein levels were also greatly elevated, but mrp1 mRNA levels remained unchanged. BCRP was upregulated in DLKP-mitoxantrone at both the mRNA and protein levels. Gelatin zymography, Western blot and RT-PCR showed that DLKP and its variants secreted MMPs 2, 9 and 13. MMP inhibition assays suggested that MMP-2 plays a more important role than MMPs 9 and 13 in cell invasion of these DLKP drug-resistant variants in vitro. These results indicate that drug exposure may induce not only resistance but also invasiveness in cancer cells.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Células Tumorais Cultivadas , Western Blotting , Movimento Celular , Esquema de Medicação , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...