Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36134962

RESUMO

The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.

2.
Mol Brain ; 13(1): 161, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228784

RESUMO

Previous studies have shown that CCL2 may cause chronic pain, but the exact mechanism of central sensitization is unclear. In this article, we further explore the presynaptic role of CCL2. Behavioral experiments show that intervertebral foramen injection CCR2 antagonists into dorsal root ganglion (DRG) can inhibit the inflammatory pain caused by CCL2 in spinal cord. We raised the question of the role of presynaptic CCR2 in the spinal dorsal horn. Subsequent electron microscopy experiments showed that CCR2 was expressed in the presynaptic CGRP terminal in the spinal dorsal horn. CCL2 can enhance presynaptic calcium signal. Whole-cell patch-clamp recordings showed that CCL2 can enhance NMDAR-eEPSCs through presynaptic effects, and further application of glutamate sensor method proved that CCL2 can act on presynaptic CCR2 to increase the release of presynaptic glutamate. In conclusion, we suggest that CCL2 can directly act on the CCR2 on presynaptic terminals of sensory neurons in the spinal dorsal horn, leading to an increase in the release of presynaptic glutamate and participate in the formation of central sensitization.


Assuntos
Quimiocina CCL2/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Dor/fisiopatologia , Terminações Pré-Sinápticas/metabolismo , Receptores CCR2/metabolismo , Medula Espinal/fisiopatologia , Transmissão Sináptica/fisiologia , Animais , Benzoxazinas/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Ácido Glutâmico/metabolismo , Hiperalgesia/complicações , Inflamação/patologia , Injeções Espinhais , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/complicações , Terminações Pré-Sinápticas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/ultraestrutura , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/ultraestrutura , Compostos de Espiro/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
Inorg Chem ; 56(2): 908-913, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28036180

RESUMO

An unusual porous metal-organic framework has been synthesized by using Pb(II) and rigid V-shaped 4,4'-(pyridine-3,5-diyl)diisophthalic acid (H4L). Structure analysis reveals that there exist 1D cylindrical 14.26 Å and triangular prism 10.69 × 10.69 × 10.69 Å3 nanotubes in the framework. Gas sorption behavior of the nanoporous MOF shows a relatively high capacity and selectivity of CO2 over CH4.

4.
Dalton Trans ; 44(29): 13325-30, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26133017

RESUMO

Four super water-stable isostructural lanthanide-organic frameworks, [Ln(HL)(H2O)2]n·2H2O (1-Ln) (Ln = Eu, Tb, Nd and Sm), have been successfully synthesized under hydrothermal conditions with 3,5-di(2,4-dicarboxylphenyl)pyridine (H4L) and Ln(NO3)3·6H2O. 1-Ln shows a novel 2D layered structure with uncoordinated carboxylic and pyridyl groups pointing to the interior of interlayer channels. The luminescent properties of 1-Eu in the solid state and one steeped in aqueous solution have been measured, which show excellent luminescence and good luminescent stability in water. Next 1-Eu was chosen as a probe for sensing different metal ions. Consequently, 1-Eu exhibits a highly selective response to Fe(3+) through the luminescence quenching effect in aqueous solutions. The probable mechanisms of the quenching effects have been investigated in detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...