Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29274, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38699737

RESUMO

Combination therapy is a highly successful way to address the limitations of using a single treatment method and improve therapy's overall efficacy. In this study, we developed a unique hollow mesoporous silica nanoparticle (HMSN) coated with folic acid (FA)-modified bovine serum albumin (FA-BSA). This nanoparticle, referred to as HFB, was designed to target cancer cells and release dual therapeutic drugs, Indocyanine green (ICG) and Paclitaxel (PTX), in response to specific stimuli termed as HFB@IP. The BSA protein acts as a "gatekeeper" to prevent early drug releases and cargo leakage by detaching from BSA in reaction to GSH. The FA facilitates the targeted transport of the drug into cancer cells that express folate receptors (FR), enhancing the effectiveness of chemo-photodynamic treatment (PDT). The drug nanocarrier demonstrated in vitro pH/redox-triggered drug release from HFB@IP due to breaking the imine bonds between aldehyde-functionalized HMSN (CHO-HMSN) and FA-BSA with the disulfide bond inside BSA. In addition, various biological assessments, including cell uptake experiments, demonstrated that HFB@IP effectively targets SGC-7901 cells and induces apoptosis in vitro. Further, it exhibits remarkable efficiency in synergistically killing cancer cells through chemo-photodynamic therapy, as indicated by a combination index (CI) of 0.328. The results showed that combining HMSN with biodegradable stimuli-responsive BSA molecules could offer a promising approach for precise chemo-photodynamic therapy in treating gastric cancer, allowing for the controlled release of drugs as necessary.

2.
Korean J Physiol Pharmacol ; 28(3): 265-273, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682174

RESUMO

This study aims to explore possible effect of RNA polymerase I subunit D (POLR1D) on proliferation and angiogenesis ability of colorectal cancer (CRC) cells and mechanism herein. The correlation of POLR1D and Yin Yang 1 (YY1) expressions with prognosis of CRC patients in TCGA database was analyzed. Quantitative realtime polymerase chain reaction (qRT-PCR) and Western blot were applied to detect expression levels of POLR1D and YY1 in CRC cell lines and CRC tissues. SW480 and HT- 29 cells were transfected with si-POLR1D or pcDNA3.1-POLR1D to achieve POLR1D suppression or overexpression before cell migration, angiogenesis of human umbilical vein endothelial cells were assessed. Western blot was used to detect expressions of p38 MAPK signal pathway related proteins and interaction of YY1 with POLR1D was confirmed by dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP). TCGA data showed that both POLR1D and YY1 expressions were up-regulated in CRC patients. High expression of POLR1D was associated with poor prognosis of CRC patients. The results showed that POLR1D and YY1 were highly expressed in CRC cell lines. Inhibition or overexpression of POLR1D can respectively suppress or enhance proliferation and angiogenesis of CRC cells. YY1 inhibition can suppress CRC progression and deactivate p38 MAPK signal pathway, which can be counteracted by POLR1D overexpression. JASPAR predicted YY1 can bind with POLR1D promoter, which was confirmed by dual luciferase reporter gene assay and ChIP. YY1 transcription can up-regulate POLR1D expression to activate p38 MAPK signal pathway, thus promoting proliferation and angiogenesis ability of CRC cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...