Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5104, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877022

RESUMO

The recent discovery of superconductivity in infinite-layer nickelate films has sparked significant interest and expanded the realm of superconductors, in which the infinite-layer structure and proper chemical doping are both of the essence. Nonetheless, the reasons for the absence of superconductivity in bulk infinite-layer nickelates remain puzzling. Herein, we investigate atomic defects and electronic structures in bulk infinite-layer Nd0.8Sr0.2NiO2 using scanning transmission electron microscopy. Our observations reveal the presence of three-dimensional (3D) block-like structural domains resulting from intersecting defect structures, disrupting the continuity within crystal grains, which could be a crucial factor in giving rise to the insulating character and inhibiting the emergence of superconductivity. Moreover, the infinite-layer structure, without complete topotactic reduction, retains interstitial oxygen atoms on the Nd atomic plane in bulk nickelates, possibly further aggravating the local distortions of NiO2 planes and hindering the superconductivity. These findings shed light on the existence of structural and atomic defects in bulk nickelates and provide valuable insights into the influence of proper topotactic reduction and structural orders on superconductivity.

2.
Ultramicroscopy ; 249: 113731, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37043992

RESUMO

Scanning moiré fringes (SMFs) in scanning transmission electron microscopy (STEM) have a broad application prospect owing to the low-magnification imaging and hereto the low electron irritation damage, especially in defects localization, strain analysis etc. However, the dynamic evolution mechanism of SMFs is still not clear. In this paper, we carry out in-depth study of SMFs with ferroelectric material GeSe as an example. With the help of combination of aberration-corrected STEM imaging and geometrical model, we discuss the evolution of SMFs with variation of scanning step (magnification), and explain its quasiperiodic behavior in the experiments. Our results will deepen the understanding of SMFs, and may widen their applications under the guidance of the new formation mechanism.

3.
Adv Mater ; 35(26): e2301021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36944139

RESUMO

Carbonates (CO3 2- ) have always been known as impurities to degrade the superconductivity in cuprate high-Tc superconductors. Herein, the atomic arrangement of carbonates is directly visualized in (Cu,C)Ba2 Ca3 Cu4 O11+δ via integrated differential phase contrast (iDPC) combined with state-of-the-art scanning transmission electron microscopy. The carbon atoms replace Cu atoms in the charge-reservoir layers, contributing to the formation of carbonates through strong orbital hybridization with the surrounding oxygen atoms. Using first-principles calculations, the spatial configuration of the carbonate groups is confirmed and their influence on the local crystal lattice and electronic states is further investigated. The carbonates not only accommodate distortions by improving the flatness of the outer CuO2 layers but also reduce the density of states at the Fermi level. These two factors play competitive roles to affect the superconductivity. This study provides direct evidence of the presence of CO3 2- groups and gains an insight into the underlying mechanism of superconductivity in oxycarbonate superconductors.

4.
Ultramicroscopy ; 246: 113686, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36682324

RESUMO

Integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) technique has been well developed for studying atomic structures at sub-Å resolution with the capability of simultaneously imaging heavy and light atoms even at an extremely low electron dose. As a direct phase contrast imaging technique, atomic resolution iDPC-STEM is sensitive to the imaging conditions. Although great achievements have been made both in aspect of theory and experiments, the influence of experimental parameters on the contrast of atomic resolution iDPC-STEM images has not been systematically investigated. Here, we perform the iDPC-STEM simulations on the prototypical example of SrTiO3 with respect to the routine experimental factors, including the defocus, specimen thickness, accelerating voltage, convergence angle, collection angle, sample tilt and electron dose. Through the evaluation of image contrast and atom column intensity, the parameters are discussed to improve the image contrast and the visibility of light elements. Moreover, the dose-dependent simulations demonstrate the advantage of low dose iDPC-STEM imaging over other conventional STEM modes. Our results provide a practical guideline to experimentally obtain accessible atomic resolution iDPC-STEM images.

5.
Micron ; 155: 103230, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35189548

RESUMO

Sample thickness is an important parameter in transmission electron microscopy (TEM) imaging for interpreting image contrast and understanding the relationship between properties and microstructure. In this study, we introduce a method for sample thickness determination in scanning TEM (STEM) mode based on scanning moiré fringes (SMFs). Focal-series SMF imaging is used and sample thickness can be determined in situ at a medium magnification range, with beam damage and contamination avoided to a large extent. It provides a fast and convenient approach for determining sample thickness in TEM imaging, which is particularly useful for beam-sensitive materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...