Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(2): 1728-1744, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441888

RESUMO

Rosmarinic acid (RA) is an important medicinal metabolite and a potent food antioxidant. We discovered that exposure to high light intensifies the accumulation of RA in the leaves of perilla (Perilla frutescens (L.) Britt). However, the molecular mechanism underlying RA synthesis in response to high light stress remains poorly understood. To address this knowledge gap, we conducted a comprehensive analysis employing transcriptomic sequencing, transcriptional activation, and genetic transformation techniques. High light treatment for 1 and 48 h resulted in the upregulation of 592 and 1,060 genes, respectively. Among these genes, three structural genes and 93 transcription factors exhibited co-expression. Notably, NAC family member PfNAC2, GBF family member PfGBF3, and cinnamate-4-hydroxylase gene PfC4H demonstrated significant co-expression and upregulation under high light stress. Transcriptional activation analysis revealed that PfGBF3 binds to and activates the PfNAC2 promoter. Additionally, both PfNAC2 and PfGBF3 bind to the PfC4H promoter, thereby positively regulating PfC4H expression. Transient overexpression of PfNAC2, PfGBF3, and PfC4H, as well as stable transgenic expression of PfNAC2, led to a substantial increase in RA accumulation in perilla. Consequently, PfGBF3 acts as a photosensitive factor that positively regulates PfNAC2 and PfC4H, while PfNAC2 also regulates PfC4H to promote RA accumulation under high light stress. The elucidation of the regulatory mechanism governing RA accumulation in perilla under high light conditions provides a foundation for developing a high-yield RA system and a model to understand light-induced metabolic accumulation.


Assuntos
Cinamatos , Depsídeos , Regulação da Expressão Gênica de Plantas , Luz , Proteínas de Plantas , Ácido Rosmarínico , Depsídeos/metabolismo , Cinamatos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Perilla frutescens/genética , Perilla frutescens/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Regiões Promotoras Genéticas/genética
2.
Ecotoxicol Environ Saf ; 246: 114177, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36244176

RESUMO

Oxidative stress in plants caused by UV-B stress has always been a great challenge to the yield of agricultural products. Carbon dots (CDs) with enzyme-like activity have been developed, and inhibiting oxidative stress in animals has been achieved, but little is known about abiotic stress resistance in plants, especially UV-B stress. In this study, CDs were synthesized from Scutellaria baicalensis via a hydrothermal method. The ability of CDs to scavenge reactive oxygen species (ROS) in vivo and in vitro and to enhance antioxidant resistance in vivo was evaluated. The results show that CDs promoted the nutrient assimilation ability of lettuce seedlings and protected the plants from UV-B stress by increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione reductase (GR), and ascorbate peroxidase (APX). Moreover, the antioxidant metabolism of plants can be activated by CDs and the expression levels of aquaporin (AQP) genes PIP1 and PIP2 are also up-regulated. These results facilitate the design and fabrication of CDs to meet the challenge of abiotic stress in food production.


Assuntos
Antioxidantes , Lactuca , Lactuca/metabolismo , Antioxidantes/metabolismo , Scutellaria baicalensis/metabolismo , Carbono/metabolismo , Catalase/metabolismo , Ascorbato Peroxidases/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
3.
Front Plant Sci ; 13: 976449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212297

RESUMO

The perilla anthocyanins have important medicinal and ornamental value, and their contents are significantly affected by light intensity. In view of their molecular mechanisms were not well understood, we integrated the metabolomic and transcriptomic analyses of the light-sensitive perilla variety under different light intensity. The perilla leave color were obviously affected under different treatments. Totally 140 flavonoid metabolites and 2461 genes showed steady change, among which 60 flavonoid metabolites were increased accumulation and 983 genes were upregulated expression under elevated light intensity treatment. Light treatment prominently affected the expression of genes involved in the main anthocyanin metabolites accumulation in perilla leaves. Using WGCNA analysis, we identified 4 key genes in anthocyanin biosynthesis pathway (CHI, DFR, and ANS) and 147 transcription factors (MYB, bHLH, bZIP, ERF, and NAC) involved in malonylshisonin biosynthesis. Among them, 6 MYBs and 4 bZIPs were predicted to play important roles in light regulation of malonylshisonin biosynthesis based on phylogenetic construction, correlation analysis, cis-acting element identification and qPCR verification. The identified key genes and regulatory factors will help us to understand the potential mechanism of photo-regulated anthocyanin accumulation in perilla.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121755, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35985230

RESUMO

Peroxynitrite (ONOO-) as an active substance, is produced during normal physiological process, which plays an important role in maintaining cell REDOX balance and cell function. Moreover, the peroxynitrite is involved in many diseases and especially can be used as a biomarker of drug-induced liver injury (DILI). Therefore, in this work, we synthesized a fluorescent probe JQ-3 for detecting ONOO-. The results showed the probe JQ-3 possessed excellent selectivity, fast response time (10 min) and low detection limit (32 nM). The probe JQ-3 is almost unaffected by pH, showing the potential application in biological systems. Moreover, the probe JQ-3 can be successfully used for the detection of exogenous and endogenous ONOO- in living cells and zebrafish. At the same time, the DILI was successfully recognized by visualizing ONOO- with JQ-3 in living cells and zebrafish. Therefore, the probe JQ-3 provides a potential tool for detecting ONOO- to understand physiological and pathology processes of disease.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácido Peroxinitroso , Animais , Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Peixe-Zebra
5.
J Environ Manage ; 251: 109563, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542625

RESUMO

Manganese dioxide (MnO2) with different morphologies (tube-, wire-, rod-, and flower-like) was synthesized via hydrothermal method and then applied for thallium (Tl) removal from wastewater. During material synthesis, short reaction time (6 h) and low temperature (110 °C) were prone to form polycrystalline flower-like birnessite type MnO2, while long reaction time (24 h) and high temperature (240 °C) were inclined to produce polycrystalline wire-like birnessite type MnO2. Moderate reaction time (12 h) with low temperature at 120 °C/140 °C led to formation of mono-crystalline rod- and tube-like α-MnO2, respectively. Wire-like MnO2 was the most effective adsorbent for Tl(I) removal from both the synthetic and industrial wastewaters. The MnO2 of four morphologies exhibited similarly high Tl(III) removal owing to the precipitation of Tl(III) as Tl2O3. Effective Tl(I)/Tl(III) removal (99%) was achieved with wire-like MnO2 at an initial pH of 6 and an adsorbent dosage of 0.25 g/L. The Tl(I)/Tl(III) adsorption can be described with the pseudo-second-order kinetic. The Tl(I) removal was best fitted with the Freundlich model, with a maximum adsorption capacity of 450 mg/g. While the Tl(III) removal was best fitted with the Langmuir model, with an extremely high capacity of 6250 mg/g. Based on the results from XRD, SEM-EDS, FT-IR, and XPS analyses, the mechanisms of Tl removal using wire-like MnO2 are primarily surface complexation and oxidative precipitation. Overall, wire-like MnO2 is a highly effective adsorbent for Tl removal from both synthetic and actual wastewaters.


Assuntos
Compostos de Manganês , Poluentes Químicos da Água , Adsorção , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Tálio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...