Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39057265

RESUMO

In this study, the morphology and ultrastructure of the compound eye of Asi. xanthospilota were examined by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), micro-computed tomography (µCT), and 3D reconstruction. Spectral sensitivity was investigated by electroretinogram (ERG) tests and phototropism experiments. The compound eye of Asi. xanthospilota is of the apposition type, consisting of 611.00 ± 17.53 ommatidia in males and 634.8 0 ± 24.73 ommatidia in females. Each ommatidium is composed of a subplano-convex cornea, an acone consisting of four cone cells, eight retinular cells along with the rhabdom, two primary pigment cells, and about 23 secondary pigment cells. The open type of rhabdom in Asi. xanthospilota consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells (R1~R6) and two distally attached rhabdomeric segments generated solely by R7, while R8 do not contribute to the rhabdom. The orientation of microvilli indicates that Asi. xanthospilota is unlikely to be a polarization-sensitive species. ERG testing showed that both males and females reacted to stimuli from red, yellow, green, blue, and ultraviolet light. Both males and females exhibited strong responses to blue and green light but weak responses to red light. The phototropism experiments showed that both males and females exhibited positive phototaxis to all five lights, with blue light significantly stronger than the others.

2.
Insects ; 15(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392541

RESUMO

The functional anatomy of the split compound eyes of whirligig beetles Dineutus mellyi (Coleoptera: Gyrinidae) was examined by advanced microscopy and microcomputed tomography. We report the first 3D visualization and analysis of the split compound eyes. On average, the dorsal and ventral eyes contain 1913 ± 44.5 facets and 3099 ± 86.2 facets, respectively. The larger area of ventral eyes ensures a higher field of vision underwater. The ommatidium of the split compound eyes is made up of laminated cornea lenses that offer protection against mechanical injuries, bullet-shaped crystalline cones that guide light to the photoreceptive regions, and screening pigments that ensure directional light passage. The photoreceptive elements, made up of eight retinular cells, exhibit a tri-tiered rhabdom structure, including the upper distal rhabdom, a clear zone that ensures maximum light passage, and an enlarged lower distal rhabdom that ensures optimal photon capture.

3.
Zookeys ; 1177: 23-40, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692325

RESUMO

The first exploratory study was conducted on the compound eye morphology and spectral characteristics of Agasicleshygrophila (Selman & Vogt, 1971) to clarify its eye structure and its spectral sensitivity. Scanning electron microscopy, paraffin sectioning, and transmission electron microscopy revealed that A.hygrophila has apposition compound eyes with both eucones and open rhabdom. The micro-computed tomography (CT) results after 3D reconstruction demonstrated the precise position of the compound eyes in the insect's head and suggested that the visual range was mainly concentrated in the front and on both sides of the head. The electroretinogram (ERG) experiment showed that red, yellow, green, blue, and ultraviolet light could stimulate the compound eyes of A.hygrophila to produce electrical signals. The behavioural experiment results showed that both males and females had the strongest phototaxis to yellow light and positive phototaxis to red, green, and blue light but negative phototaxis to UV light. This study of the compound eyes of A.hygrophila will be helpful for decoding its visual mechanism in future studies.

4.
Curr Zool ; 69(2): 173-180, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091996

RESUMO

Larvae of some leaf beetles carry masses of feces covering parts or all of the body, which is called a "fecal shield". In general, the shield is thought to be a defense structure against natural enemies. However, some studies have suggested that defense effectiveness varies depending on the natural enemy. In this study, we used a fecal retention leaf beetle Ophrida xanthospilota (Coleoptera: Chrysomelidae), and 2 local generalist predators (an ant, Camponotus japonicus (Hymenoptera: Formicidae) and a stinkbug, Arma custos [Hemiptera: Pentatomidae]) as a system to test the hypothesis that the fecal shield of O. xanthospilota plays different roles in predation behavior of different predators and can provide multiple chemical communication signals in predator-prey interactions. Prey bioassays showed that the fecal shield of O. xanthospilota larvae repelled the ant C. japonicus while attracting the stinkbug A. custos. The results also strongly demonstrated that hexane extracts of the fecal shield significantly repelled C. japonicus, while dichloromethane (DCM) extracts did not inhibit ant predation. Interestingly, DCM extracts attracted A. custos, but hexane extracts did not. Therefore, we suggest that the fecal shield is a double-edged sword for the larvae of O. xanthospilota. Our results also indicated that the risk-benefit tradeoff of an insect should be estimated at a community level involving multiple enemies (predators and parasites) and herbivores, rather than in a single prey-predator pair.

5.
Zookeys ; (808): 115-121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30598609

RESUMO

A new species, Sphaeriusminutus sp. n., is described and illustrated from Jinggangshan Mts., Jiangxi Province, China. It is the first species of this family described from East Asia. This species lives under wet stones at the edge of rivers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...