Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
J Clin Periodontol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951121

RESUMO

AIM: To identify an optimized strategy for the large-scale production of nanovesicles (NVs) that preserve the biological properties of exosomes (EXOs) for use in periodontal regeneration. MATERIALS AND METHODS: NVs from dental follicle stem cells (DFSCs) were prepared through extrusion, and EXOs from DFSCs were isolated. The yield of both extruded NVs (eNVs) and EXOs were quantified through protein concentration and particle number analyses. Their pro-migration, pro-proliferation and pro-osteogenesis capacities were compared subsequently in vitro. Additionally, proteomics analysis was conducted. To further evaluate the periodontal regeneration potential of eNVs and EXOs, they were incorporated into collagen sponges and transplanted into periodontal defects in rats. In vivo imaging and H&E staining were utilized to verify their biodistribution and safety. Micro-Computed Tomography analysis and histological staining were performed to examine the regeneration of periodontal tissues. RESULTS: The yield of eNVs was nearly 40 times higher than that of EXOs. Interestingly, in vitro experiments indicated that the pro-migration and pro-proliferation abilities of eNVs were superior, and the pro-osteogenesis potential was comparable to EXOs. More importantly, eNVs exhibited periodontal regenerative potential similar to that of EXOs. CONCLUSIONS: Extrusion has proven to be an efficient method for generating numerous eNVs with the potential to replace EXOs in periodontal regeneration.

2.
Int J Biol Sci ; 20(9): 3372-3392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993570

RESUMO

Oral squamous cell carcinoma (OSCC) is an aggressive cancer that poses a substantial threat to human life and quality of life globally. Lipid metabolism reprogramming significantly influences tumor development, affecting not only tumor cells but also tumor-associated macrophages (TAMs) infiltration. SOAT1, a critical enzyme in lipid metabolism, holds high prognostic value in various cancers. This study revealed that SOAT1 is highly expressed in OSCC tissues and positively correlated with M2 TAMs infiltration. Increased SOAT1 expression enhanced the capabilities of cell proliferation, tumor sphere formation, migration, and invasion in OSCC cells, upregulated the SREBP1-regulated adipogenic pathway, activated the PI3K/AKT/mTOR pathway and promoted M2-like polarization of TAMs, thereby contributing to OSCC growth both in vitro and in vivo. Additionally, we explored the upstream transcription factors that regulate SOAT1 and discovered that ETS1 positively regulates SOAT1 expression levels. Knockdown of ETS1 effectively inhibited the malignant phenotype of OSCC cells, whereas restoring SOAT1 expression significantly mitigated this suppression. Based on these findings, we suggest that SOAT1 is regulated by ETS1 and plays a pivotal role in the development of OSCC by facilitating lipid metabolism and M2-like polarization of TAMs. We propose that SOAT1 is a promising target for OSCC therapy with tremendous potential.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Proteína Proto-Oncogênica c-ets-1 , Macrófagos Associados a Tumor , Humanos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Macrófagos Associados a Tumor/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Masculino , Movimento Celular
3.
J Biol Chem ; : 107562, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002670

RESUMO

The hormone leptin, primarily secreted by adipocytes, plays a crucial role in regulating whole-body energy homeostasis. Homozygous loss-of-function mutations in the leptin gene (LEP) cause hyperphagia and severe obesity, primarily through alterations in leptin's affinity for its receptor or changes in serum leptin concentrations. Although serum concentrations are influenced by various factors (e.g., gene expression, protein synthesis, stability in the serum), proper delivery of leptin from its site of synthesis in the endoplasmic reticulum via the secretory pathway to the extracellular serum is a critical step. However, the regulatory mechanisms and specific machinery involved in this trafficking route, particularly in the context of human LEP mutations, remain largely unexplored. We have employed the Retention Using Selective Hooks (RUSH) system to elucidate the secretory pathway of leptin. We have refined this system into a medium-throughput assay for examining the pathophysiology of a range of obesity-associated LEP variants. Our results reveal that leptin follows the default secretory pathway, with no additional regulatory steps identified prior to secretion. Through screening of leptin variants, we identified three mutations that lead to proteasomal degradation of leptin and one variant that significantly decreased leptin secretion, likely through aberrant disulfide bond formation. These observations have identified novel pathogenic effects of leptin variants, which can be informative for therapeutics and diagnostics. Finally, our novel quantitative screening platform can be adapted for other secreted proteins.

4.
Nanomicro Lett ; 16(1): 218, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884868

RESUMO

Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.

5.
Food Res Int ; 190: 114545, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945558

RESUMO

Cyclocarya paliurus (Batal.) leaves, which contain a range of bioactive compounds, have been used as a traditional Chinese medicine homologous food since ancient times. However, there is a paucity of literature on comprehensive studies of alkaloids in the leaves of Cyclocarya paliurus (Batal.). For the first time, this study aimed to discover and identify alkaloids extracted from Cyclocarya paliurus (Batal.) leaves by ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-QTOF-MS). A total of ten alkaloids have been identified from Cyclocarya paliurus (Batal.) leaves based on accurate mass spectra (mass accuracy, isotopic spacing and distribution) and comparison to fragmentation spectra reported in the literature. In vitro, alkaloids alleviated insulin resistance by increasing glucose consumption and glycogen content in insulin resistance HepG2 cells. The RNA-seq and western blotting results showed that alkaloids could upregulate the expression of phosphatidylinositol 3-kinase (PI3K), and increase the phosphorylation of insulin receptor protein kinase B (AKT). This study not only clarified the chemical constituents and revealed that diverse alkaloids also presented from Cyclocarya paliurus (Batal.) leaves, also, it will provide chemical information on potential compounds for developing new drugs.


Assuntos
Alcaloides , Resistência à Insulina , Juglandaceae , Folhas de Planta , Espectrometria de Massas em Tandem , Folhas de Planta/química , Alcaloides/análise , Células Hep G2 , Humanos , Cromatografia Líquida de Alta Pressão , Juglandaceae/química , Espectrometria de Massas em Tandem/métodos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Sci Rep ; 14(1): 12430, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816541

RESUMO

Dietary trans 10, cis 12-conjugated linoleic acid (t10c12-CLA) is a potential candidate in anti-obesity trials. A transgenic mouse was previously successfully established to determine the anti-obesity properties of t10c12-CLA in male mice that could produce endogenous t10c12-CLA. To test whether there is a different impact of t10c12-CLA on lipid metabolism in both sexes, this study investigated the adiposity and metabolic profiles of female Pai mice that exhibited a dose-dependent expression of foreign Pai gene and a shift of t10c12-CLA content in tested tissues. Compared to their gender-match wild-type littermates, Pai mice had no fat reduction but exhibited enhanced lipolysis and thermogenesis by phosphorylated hormone-sensitive lipase and up-regulating uncoupling proteins in brown adipose tissue. Simultaneously, Pai mice showed hepatic steatosis and hypertriglyceridemia by decreasing gene expression involved in lipid and glucose metabolism. Further investigations revealed that t10c10-CLA induced excessive prostaglandin E2, adrenaline, corticosterone, glucagon and inflammatory factors in a dose-dependent manner, resulting in less heat release and oxygen consumption in Pai mice. Moreover, fibroblast growth factor 21 overproduction only in monoallelic Pai/wt mice indicates that it was sensitive to low doses of t10c12-CLA. These results suggest that chronic t10c12-CLA has system-wide effects on female health via synergistic actions of various hormones.


Assuntos
Corticosterona , Dinoprostona , Epinefrina , Fatores de Crescimento de Fibroblastos , Glucagon , Ácidos Linoleicos Conjugados , Camundongos Transgênicos , Animais , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Corticosterona/metabolismo , Dinoprostona/metabolismo , Glucagon/metabolismo , Epinefrina/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/genética , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Lipólise/efeitos dos fármacos , Hipertrigliceridemia/metabolismo , Hipertrigliceridemia/genética , Adiposidade/efeitos dos fármacos
7.
Cancer Cell Int ; 24(1): 145, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654331

RESUMO

Lung adenocarcinoma is a major public health problem with the low 5-year survival rate (15%) among cancers. Aberrant alterations of meiotic genes, which have gained increased attention recently, might contribute to elevated tumor risks. However, systematic and comprehensive studies based on the relationship between meiotic genes and LUAD recurrence and treatment response are still lacking. In this manuscript, we first confirmed that the meiosis related prognostic model (MRPM) was strongly related to LUAD progression via LASSO-Cox regression analyses. Furthermore, we identified the role of PPP2R1A in LUAD, which showed more contributions to LUAD process compared with other meiotic genes in our prognostic model. Additionally, repression of PPP2R1A enhances cellular susceptibility to nelfinavir-induced apoptosis and pyroptosis. Collectively, our findings indicated that meiosis-related genes might be therapeutic targets in LUAD and provided crucial guidelines for LUAD clinical intervention.

8.
Food Chem ; 449: 139227, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599108

RESUMO

Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.


Assuntos
Metabolômica , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Plantas Comestíveis/genética , Análise de Alimentos , Manipulação de Alimentos , Plantas/metabolismo , Plantas/química , Plantas/classificação
9.
Int J Biol Macromol ; 267(Pt 1): 131386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582458

RESUMO

Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Portadores de Fármacos , Ácido Hialurônico , Nanopartículas , Verteporfina , Lesão Pulmonar Aguda/tratamento farmacológico , Ácido Hialurônico/química , Animais , Camundongos , Verteporfina/administração & dosagem , Verteporfina/farmacologia , Verteporfina/uso terapêutico , Nanopartículas/química , Portadores de Fármacos/química , Células RAW 264.7 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Aerossóis , Masculino , Sistemas de Liberação de Medicamentos , Administração por Inalação
10.
EMBO J ; 43(11): 2127-2165, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580776

RESUMO

The in vitro oxygen microenvironment profoundly affects the capacity of cell cultures to model physiological and pathophysiological states. Cell culture is often considered to be hyperoxic, but pericellular oxygen levels, which are affected by oxygen diffusivity and consumption, are rarely reported. Here, we provide evidence that several cell types in culture actually experience local hypoxia, with important implications for cell metabolism and function. We focused initially on adipocytes, as adipose tissue hypoxia is frequently observed in obesity and precedes diminished adipocyte function. Under standard conditions, cultured adipocytes are highly glycolytic and exhibit a transcriptional profile indicative of physiological hypoxia. Increasing pericellular oxygen diverted glucose flux toward mitochondria, lowered HIF1α activity, and resulted in widespread transcriptional rewiring. Functionally, adipocytes increased adipokine secretion and sensitivity to insulin and lipolytic stimuli, recapitulating a healthier adipocyte model. The functional benefits of increasing pericellular oxygen were also observed in macrophages, hPSC-derived hepatocytes and cardiac organoids. Our findings demonstrate that oxygen is limiting in many terminally-differentiated cell types, and that considering pericellular oxygen improves the quality, reproducibility and translatability of culture models.


Assuntos
Adipócitos , Diferenciação Celular , Oxigênio , Oxigênio/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Humanos , Técnicas de Cultura de Células/métodos , Animais , Glicólise , Hepatócitos/metabolismo , Hipóxia Celular , Mitocôndrias/metabolismo , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Cultivadas , Glucose/metabolismo , Macrófagos/metabolismo
11.
BMJ Open ; 14(3): e080032, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508642

RESUMO

INTRODUCTION: In recent years, the influence of artificial intelligence technology on clinical trials has been steadily increasing. It has brought about significant improvements in the efficiency and cost reduction of clinical trials. The objective of this scoping review is to systematically map, describe and summarise the current utilisation of artificial intelligence in recruitment and retention process of clinical trials that has been reported in research. Additionally, the review aims to identify benefits and drawbacks, as well as barriers and facilitators associated with the application of artificial intelligence in optimising recruitment and retention in clinical trials. The findings of this review will provide insights and recommendations for future development of artificial intelligence in the context of clinical trials. METHODS AND ANALYSIS: The review of relevant literature will follow the methodological framework for scoping studies provided by the Joanna Briggs Institute. A comprehensive electronic search will be conducted using the search strategy developed by the authors. Leading medical and computer science databases such as PubMed, Embase, Scopus, IEEE Xplore and Web of Science Core Collection will be searched. The search will encompass analytical observational studies, descriptive observational studies, experimental and quasi-experimental studies published in all languages, without any time limitations, which use artificial intelligence tools in the recruitment and retention process of clinical trials. The review team will screen the identified studies and import them into a dedicated electronic library specifically created for this review. Data extraction will be performed using a data charting table. ETHICS AND DISSEMINATION: Secondary data will be attained in this scoping review; therefore, no ethical approval is required. The results of the final review will be published in a peer-reviewed journal. It is expected that results will inform future artificial intelligence and clinical trials research.


Assuntos
Inteligência Artificial , Projetos de Pesquisa , Humanos , Revisão por Pares , Literatura de Revisão como Assunto
12.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467631

RESUMO

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Células Epiteliais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Cromossômicas não Histona
13.
Phytomedicine ; 128: 155432, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518645

RESUMO

BACKGROUND: Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE: This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS: The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS: A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION: In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.


Assuntos
Antineoplásicos Fitogênicos , Saponinas , Esteroides , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Humanos , Esteroides/farmacologia , Esteroides/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos
14.
Int J Nanomedicine ; 19: 2611-2623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505166

RESUMO

Background: The photodynamic therapy (PDT) showed promising potential in treating tongue squamous cell carcinoma (TSCC). The Food and Drug Administration approved Verteporfin (Ver) is a powerful alternative in this field for its penetrating power and high production of reactive oxygen species (ROS). However, its applications in the treatment of TSCC are still rare. Methods: Ver was loaded onto Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, followed by the modification with RGD peptide as the ligand. The nanostructured was named as RPV. In vitro assessments were conducted to evaluate the cytotoxicity of RPV through the Live/Dead assay analysis and Cell Counting Kit-8 (CCK-8) assay. Using the reactive oxygen species assay kit, the potential for inducing targeted tumor cell death upon laser irradiation by promoting ROS production was investigated. In vivo experiments involved with the biological distribution of RPV, the administration with RPV followed by laser irradiation, and the measurement of the tumor volumes. Immunohistochemical analysis was used to detect the Ki-67 expression, and apoptosis induced by RPV-treated group. Systemic toxicity was evaluated through hematoxylin-eosin staining and blood routine analysis. Real-time monitoring was employed to track RPV accumulation at tumor sites. Results: The in vitro assessments demonstrated the low cytotoxicity of RPV and indicated its potential for targeted killing TSCC cells under laser irradiation. In vivo experiments revealed significant tumor growth inhibition with RPV treatment and laser irradiation. Immunohistochemical analysis showed a notable decrease in Ki-67 expression, suggesting the effective suppression of cell proliferation, and TUNEL assay indicated the increased apoptosis in the RPV-treated group. Pathological examination and blood routine analysis revealed no significant systemic toxicity. Real-time monitoring exhibited selective accumulation of RPV at tumor sites. Conclusion: The findings collectively suggest that RPV holds promise as a safe and effective therapeutic strategy for TSCC, offering a combination of targeted drug delivery with photodynamic therapy.


Assuntos
Carcinoma de Células Escamosas , Nanopartículas , Fotoquimioterapia , Neoplasias da Língua , Humanos , Verteporfina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Espécies Reativas de Oxigênio/metabolismo , Antígeno Ki-67 , Linhagem Celular Tumoral , Língua/metabolismo , Língua/patologia , Fármacos Fotossensibilizantes
15.
FASEB J ; 38(3): e23458, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315453

RESUMO

Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3ß (glycogen synthase kinase 3ß), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3ß participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3ß in DKD and its damage mechanism in different intrinsic renal cells. GSK3ß is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3ß inhibitors on DKD are also discussed.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glicogênio Sintase Quinase 3 beta , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Rim/metabolismo
16.
Drug Resist Updat ; 73: 101060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309140

RESUMO

Cancer lactate metabolic reprogramming induces an elevated level of extracellular lactate and H+, leading to an acidic immunosuppressive tumor microenvironment (TEM). High lactic acid level may affect the metabolic programs of various cells that comprise an antitumor immune response, therefore, restricting immune-mediated tumor destruction, and leading to therapeutic resistance and unsatisfactory prognosis. Here, we report a metal-phenolic coordination-based nanocomplex loaded with a natural polyphenol galloflavin, which inhibits the function of lactate dehydrogenase, reducing the production of lactic acid, and alleviating the acidic immunosuppressive TME. Besides, the co-entrapped natural polyphenol carnosic acid and the synthetic PEG-Ce6 polyphenol derivative (serving as a photosensitizer) could induce immunogenic cancer cell death upon laser irradiation, which further activates immune system and promotes immune cell recruitment and infiltration in tumor tissues. We demonstrated that this nanocomplex-based combinational therapy could reshape the TME and elicit immune responses in a murine breast cancer model, which provides a promising strategy to enhance the therapeutic efficiency of drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Animais , Camundongos , Feminino , Ácido Láctico , Polifenóis/farmacologia , Reprogramação Metabólica , Neoplasias/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Fenóis , Microambiente Tumoral
17.
Sci Total Environ ; 921: 171122, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395165

RESUMO

Wildfires produce smoke that can affect an area >1000 times the burn extent, with far-reaching human health, ecologic, and economic impacts. Accurately estimating aerosol load within smoke plumes is therefore crucial for understanding and mitigating these impacts. We evaluated the effectiveness of the latest Collection 6.1 MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm in estimating aerosol optical depth (AOD) across the U.S. during the historic 2020 wildfire season. We compared satellite-based MAIAC AOD to ground-based AERONET AOD measurements during no-, light-, medium-, and heavy-smoke conditions identified using the Hazard Mapping System Fire and Smoke Product. This smoke product consists of maximum extent smoke polygons digitized by analysts using visible band imagery and classified according to smoke density. We also examined the strength of the correlations between satellite- and ground-based AOD for major land cover types under various smoke density levels. MAIAC performed well in estimating AOD during smoke-affected conditions. Correlations between MAIAC and AERONET AOD were strong for medium- (r = 0.91) and heavy-smoke (r = 0.90) density, and MAIAC estimates of AOD showed little bias relative to ground-based AERONET measurements (normalized mean bias = 3 % for medium, 5 % for heavy smoke). During two high AOD, heavy smoke episodes, MAIAC underestimated ground-based AERONET AOD under mixed aerosol (i.e., smoke and dust; median bias = -0.08) and overestimated AOD under smoke-dominated (median bias = 0.02) aerosol. MAIAC most overestimated ground-based AERONET AOD over barren land (mean NMB = 48 %). Our findings indicate that MODIS MAIAC can provide robust estimates of AOD as smoke density increases in coming years. Increased frequency of mixed aerosol and expansion of developed land could affect the performance of the MAIAC algorithm in the future, however, with implications for evaluating wildfire-associated health and welfare effects and air quality standards.

18.
Nat Commun ; 15(1): 1266, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341401

RESUMO

Ubiquitination, catalyzed usually by a three-enzyme cascade (E1, E2, E3), regulates various eukaryotic cellular processes. E3 ligases are the most critical components of this catalytic cascade, determining both substrate specificity and polyubiquitination linkage specificity. Here, we reveal the mechanism of a naturally occurring E3-independent ubiquitination reaction of a unique human E2 enzyme UBE2E1 by solving the structure of UBE2E1 in complex with substrate SETDB1-derived peptide. Guided by this peptide sequence-dependent ubiquitination mechanism, we developed an E3-free enzymatic strategy SUE1 (sequence-dependent ubiquitination using UBE2E1) to efficiently generate ubiquitinated proteins with customized ubiquitinated sites, ubiquitin chain linkages and lengths. Notably, this strategy can also be used to generate site-specific branched ubiquitin chains or even NEDD8-modified proteins. Our work not only deepens the understanding of how an E3-free substrate ubiquitination reaction occurs in human cells, but also provides a practical approach for obtaining ubiquitinated proteins to dissect the biochemical functions of ubiquitination.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Peptídeos/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Engenharia de Proteínas
19.
Angew Chem Int Ed Engl ; 63(4): e202316710, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38061992

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11 eV (24 nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.

20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1013520

RESUMO

@#[摘 要] 目的:基于GINS家族成员在胶质瘤组织中表达水平对其分型,探究此分型预测胶质瘤患者的预后、免疫治疗疗效的有效性,采用TCMOI数据库虚拟筛选可靶向GINS的中药小分子。方法:数据库分析GINS基因组学、胶质瘤组织中差异表达基因与患者预后的关系,基于GINS家族成员基因表达对胶质瘤进行分型并分析各亚型的预后情况,数据库数据分析各亚型中的基因突变、基因富集、肿瘤纯度和免疫细胞浸润评分,以及与GINS2可能相互作用的中药小分子,最后用qPCR法检测中国人胶质瘤组织中GINS1~4 mRNA的表达水平以验证其与数据库数据的一致性。结果:GINS家族各成员间的基因、蛋白结构和功能相似,胶质瘤组织中GINS家族成员呈高表达且与患者不良预后密切相关(P<0.05),基于GINS家族成员在胶质瘤组织中表达水平的S1、S2亚型分类能较好地预测胶质瘤患者的预后,S1亚型主要突变基因为CDKN2A/B、EGFR、PTEN而S2亚型的突变基因为IDH1、TP53和ATRX,GINS家族可能通过调控免疫微环境影响胶质瘤患者预后,CD276和CX3CL1可能是S1亚型胶质瘤患者实施免疫治疗的潜在靶点,CHEMBL66033、266935、293914、436859、1594881可能是潜在的靶向GINS2的中药小分子。结论:基于GINS家族构建的胶质瘤分子分型有助于识别更适合免疫治疗的高风险患者,筛选出的中药小分子可为胶质瘤患者分子靶向治疗和免疫治疗提供参考。

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...