Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38993025

RESUMO

Metal halide perovskites have demonstrated superior sensitivity, lower detection limits, stability, and exceptional photoelectric properties in comparison to existing commercially available X-ray detector materials, showing their potential for shaping the next generation of X-ray detectors. Nevertheless, significant challenges persist in the seamless integration of these materials into pixelated array sensors for large-area X-ray direct detection imaging. In this article, we propose a strategy for fabricating large-scale array devices using a double-sided bonding process. The approach involves depositing a wet film on the surface of a thin-film transistor substrate to establish a robust bond between the substrate and δ-CsPbI3 wafer via van der Waals force, thereby facilitating area-array imaging. Additionally, the freestanding polycrystalline δ-CsPbI3 wafer demonstrated a competitive ultralow detection limit of 3.46 nGyair s-1 under 50 kVP X-ray irradiation, and the δ-CsPbI3 wafer still maintains a stable signal output (signal current drift is 3.5 × 10-5 pA cm-1 s-1 V-1) under the accumulated radiation dose of 234.9 mGyair. This strategy provides a novel perspective for the industrial production of large-area X-ray flat panel detectors utilizing perovskites and their derivatives.

2.
World J Clin Cases ; 12(18): 3534-3538, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38983427

RESUMO

BACKGROUND: Conjoined twins are a rare twin malformation commonly presenting as single amniotic sac twinning, with double amniotic sac twinning being extremely rare and poorly reported. Most conjoined twins are females. CASE SUMMARY: A woman of childbearing age conceived naturally, and at 8 wk of gestation, transvaginal ultrasonography showed an embryo and cardiac tube pulsation in both amniotic sacs. On dynamic observation, the two embryos were connected in the lower abdomen, with restricted movement. A repeat transvaginal ultrasound at 11 wk showed that the intestinal tubes of both fetuses were connected in the lower abdomen. The pregnancy was terminated and labor was induced. CONCLUSION: Transvaginal ultrasound may detect conjoined twin malformations in an early stage. Our case provides diagnostic insights for ultrasonographers and can help develop early therapeutic interventions.

3.
Front Cell Infect Microbiol ; 14: 1420995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962321

RESUMO

Introduction: Due to the high-density farming of Larimichthys crocea over the years, diseases caused by pathogens such as bacteria, viruses, and parasites frequently occur in Ningbo, posing a huge threat and challenge to the sustainable and healthy development of the L. crocea's bay farming industry. In order to understand the diseases occurrence in L. crocea farming in Ningbo area, an epidemiological investigation of L. crocea diseases was carried out through regular sampling in 2023. Methods: From April to October 2023, routine sampling of L. crocea was conducted monthly in various farming areas in Ningbo. Each time, live or dying L. crocea with obvious clinical symptoms were sampled, with a total number of 55 L. crocea collected. The samples were preserved in ice bags and transported to the laboratory for pathogen detection(including bacterial isolation and identification,virus identification, and parasites detection). Results: A total of fifty-five fish dying L. crocea with obvious clinical symptoms were collected in this study, of which 78.18% (43/55) were detected with symptoms caused by pathogenic infection, while 21.82% (12/55) did not have identified pathogens, which were presumed to be breeding abrasions, nutritional metabolic disorders, unconventional pathogens infection or other reasons. A total of twenty-five pathogenic bacteria strains were isolated, which mainly were Pseudomonas plecoglossicida and Vibrio harveyi, accounting for 52% (13/25) and 32% (8/25) of the pathogenic bacteria strains, respectively. Among them, both V. harveyi and Streptococcus. iniae co-infected one fish. Additionally, three other bacterial strains including Nocardia seriolae, Staphylococcus Saprophyticus, and Photobacterium damselae subsp.damselae were isolated. Microscopic examination mainly observed two parasites, Cryptocaryon irritans and Neobenedenia girellae. In virus detection, the red sea bream iridovirus (RSIV) was mainly detected in L. crocea. Statistical analysis showed that among the fish with detected pathogens, 55.81% (24/43) had bacterial infections, 37.21% (16/43) had parasitic infections, and 37.21% (16/43) had RSIV infections. Among them, five fish had mixed infections of bacteria and parasites, three had mixed infections of bacteria and viruses, three had mixed infections of parasites and viruses, and one L. crocea had mixed infections of viruses, bacteria, and parasites. Discussion: These findings indicate that these three major types of diseases are very common in the L. crocea farming area in Ningbo, implying the complexity of mixed infections of multiple diseases.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/microbiologia , Perciformes/microbiologia , Perciformes/parasitologia , China/epidemiologia , Aquicultura , Vibrio/isolamento & purificação , Vibrio/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética
5.
Proc Natl Acad Sci U S A ; 121(29): e2400898121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980900

RESUMO

Precise electrochemical synthesis of commodity chemicals and fuels from CO2 building blocks provides a promising route to close the anthropogenic carbon cycle, in which renewable but intermittent electricity could be stored within the greenhouse gas molecules. Here, we report state-of-the-art CO2-to-HCOOH valorization performance over a multiscale optimized Cu-Bi cathodic architecture, delivering a formate Faradaic efficiency exceeding 95% within an aqueous electrolyzer, a C-basis HCOOH purity above 99.8% within a solid-state electrolyzer operated at 100 mA cm-2 for 200 h and an energy efficiency of 39.2%, as well as a tunable aqueous HCOOH concentration ranging from 2.7 to 92.1 wt%. Via a combined two-dimensional reaction phase diagram and finite element analysis, we highlight the role of local geometries of Cu and Bi in branching the adsorption strength for key intermediates like *COOH and *OCHO for CO2 reduction, while the crystal orbital Hamiltonian population analysis rationalizes the vital contribution from moderate binding strength of η2(O,O)-OCHO on Cu-doped Bi surface in promoting HCOOH electrosynthesis. The findings of this study not only shed light on the tuning knobs for precise CO2 valorization, but also provide a different research paradigm for advancing the activity and selectivity optimization in a broad range of electrosynthetic systems.

6.
Langmuir ; 40(27): 13984-13994, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38913777

RESUMO

Strong metal-support interaction (SMSI), which has drawn widespread attention in heterogeneous catalysis, is thought to significantly affect the catalytic performance for volatile organic chemical (VOC) abatement. In the present study, strong interactions between platinum and ceria are constructed by modulating the oxygen vacancy concentration of CeO2 through a NaBH4 reduction method. For a catalyst with higher content of oxygen vacancy, more electrons would transfer from ceria to Pt, which is attributed to the stronger effect of SMSI. The obtained electron-richer Pt sites exhibit higher ability for toluene activation, contributing to better performance for toluene oxidation. On the other hand, the stronger metal-support interaction would facilitate CeOx species migrating to the Pt nanoparticle surface and forming an encapsulated structure. Smaller Pt dispersion leads to fewer sites for toluene adsorption and activation, which is to the disadvantage of the reaction. Therefore, taking the negative and positive effects together, the Pt/CeO2-0.5 catalyst has the highest catalytic performance for toluene abatement. Our study provides new insights into strong metal-support interaction on toluene oxidation and contributes to designing noble metal catalysts for VOC abatement.

7.
Aging (Albany NY) ; 16(12): 10579-10614, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38913914

RESUMO

Mitophagy serves as a critical mechanism for tumor cell death, significantly impacting the progression of tumors and their treatment approaches. There are significant challenges in treating patients with head and neck squamous cell carcinoma, underscoring the importance of identifying new targets for therapy. The function of mitophagy in head and neck squamous carcinoma remains uncertain, thus investigating its impact on patient outcomes and immunotherapeutic responses is especially crucial. We initially analyzed the differential expression, prognostic value, intergene correlations, copy number variations, and mutation frequencies of mitophagy-related genes at the pan-cancer level. Through unsupervised clustering, we divided head and neck squamous carcinoma into three subtypes with distinct prognoses, identified the signaling pathway features of each subtype using ssGSEA, and characterized subtype B as having features of an immune desert using various immune infiltration calculation methods. Using multi-omics data, we identified the genomic variation characteristics, mutated gene pathway features, and drug sensitivity features of the mitophagy subtypes. Utilizing a combination of 10 machine learning algorithms, we have developed a prognostic scoring model called Mitophagy Subgroup Risk Score (MSRS), which is used to predict patient survival and the response to immune checkpoint blockade therapy. Simultaneously, we applied MSRS to single-cell analysis to explore intercellular communication. Through laboratory experiments, we validated the biological function of SLC26A9, one of the genes in the risk model. In summary, we have explored the significant role of mitophagy in head and neck tumors through multi-omics data, providing new directions for clinical treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia , Aprendizado de Máquina , Mitofagia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Mitofagia/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia , Imunoterapia/métodos , Prognóstico , Variações do Número de Cópias de DNA , Regulação Neoplásica da Expressão Gênica , Mutação , Multiômica
8.
Front Plant Sci ; 15: 1385164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895612

RESUMO

Biotic stresses caused by bacterial and fungal pathogens damage crops; identifying treatments that enhance disease resistance provides important information for understanding plant defenses and sustainable agriculture. Salt stress affects crop yields worldwide; however, studies have focused on the toxic sodium ion, leaving the effects of the chloride ion unclear. In this study, we found that irrigation with a combination of chloride salts (MgCl2, CaCl2, and KCl) suppressed the cell death phenotype of the ceramide kinase mutant acd5. Chloride salt pre-irrigation also significantly limited the cell death caused by Pseudomonas syringae pv maculicola infection and inhibited the multiplication of this bacterial pathogen in a mechanism partially dependent on the salicylic acid pathway. Moreover, chloride salt pre-irrigation improved plant defenses against the fungal pathogen challenge, confining the lesion area caused by Botrytis cinerea infection. Furthermore, the growth of herbivorous larvae of Spodoptera exigua was retarded by feeding on chloride salt irrigated plants. Thus, our data suggest that treatment with Cl- increases broad spectrum resistance to biotic challenges.

9.
Phlebology ; : 2683555241258274, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822566

RESUMO

Objectives: To investigate the diagnostic value of fibrinogen (FIB) in patients with rib fractures complicated by lower extremity deep venous thrombosis (DVT).Methods: Analyzing data from 493 patients at Shijiazhuang Third Hospital, FIB levels at 24, 48, and 72 h post-injury were compared between DVT and non-DVT groups.Results: DVT group had elevated FIB levels at all times (p < .001). FIB at 24 h showed highest AUC, particularly in patients with BMI <28.Conclusion: In conclusion, measuring FIB at 24 h post-injury enhances DVT detection in rib fracture patients, with potential BMI-related variations.

10.
Lab Chip ; 24(14): 3388-3402, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38818738

RESUMO

As a model organism for space biology experiments, Caenorhabditis elegans (C. elegans) has low demand for life support and strong resistance to unfavorable environments, making experimentation with C. elegans relatively easy and cost-effective. Previously, C. elegans has been flown in several spaceflight investigations, but there is still an urgent need for analytical platforms enabling on-orbit automated monitoring of multiple phenotypes of worms, such as growth and development, movement, changes of biomarkers, etc. To solve this problem, we presented a fully integrated microfluidic system (WormSpace µ-TAS) with an arrayed microfluidic chip (WormChip-4.8.1) and a replaceable microfluidic module (WormChip cartridge), which was compatible with the experimental facility on the China Space Station (CSS). By adopting technologies of programmed fluid control based on liquid medium CeMM as well as multi-function imaging with a camera mounted on a three-dimensional (3D) transportation stage, automated and long-term experimentation can be performed for on-chip multi-strain culturing and bright-field and fluorescence imaging of C. elegans at the single-worm level. The presented WormSpace µ-TAS enabled its successful application on the CSS, achieving flight launch of the sample unit (WormChip cartridge) at low temperature (controlled by a passive thermal case at 12 °C), automated 30-day cultivation of 4 strains of C. elegans, on-orbit monitoring of multiple phenotypes (growth and development, movement, and changes of fluorescent protein expression) at the single worm-level, on-chip fixation of animals at the end of the experiment and returning the fixed samples to earth. In summary, this study presented a verified microfluidic system and experimental protocols for automated on-chip multi-strain culturing and multi-function imaging of C. elegans at the single-worm level on the CSS. The WormSpace µ-TAS will provide a novel experimental platform for the study of biological effects of space radiation and microgravity, and for the development of protective drugs.


Assuntos
Caenorhabditis elegans , Dispositivos Lab-On-A-Chip , Animais , China , Voo Espacial , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Automação
11.
Phytomedicine ; 130: 155712, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38763008

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has emerged as a burgeoning health problem worldwide, but no specific drug has been approved for its treatment. Shenling Baizhu powder (SL) is extensively used to treat NAFLD in Chinese clinical practice. However, the therapeutic components and pharmacological mechanisms of SL against NAFLD have not been thoroughly investigated. PURPOSE: This study aimed to investigate the pharmacological impact and molecular mechanism of SL on NAFLD. METHODS: First, we established an animal model of NAFLD by high-fat diet (HFD) feeding, and evaluated the therapeutic efficacy of SL on NAFLD by physiological, biochemical, pathological, and body composition analysis. Next, the effect of SL on autophagic flow in NAFLD rats was evaluated by ultrastructure, immunofluorescence staining, and western blotting. Moreover, an integrated strategy of targeted energy metabolomics and network pharmacology was performed to characterize autophagy-related genes and explore the synergistic effects of SL active compounds. UPLC-MS/MS, molecular docking combined with in vivo and in vitro experiments were conducted to verify the key compounds and genes. Finally, a network was established among SL-herb-compound-genes-energy metabolites-NAFLD, which explains the complicated regulating mechanism of SL on NAFLD. RESULTS: We discovered that SL decreased hepatic lipid accumulation, hepatic steatosis, and insulin resistance, and improved systemic metabolic disorders and pathological abnormalities. Subsequently, an integrated strategy of targeted energy metabolomics and network pharmacology identified quercetin, ellagic acid, kaempferol, formononetin, stigmasterol, isorhamnetin and luteolin as key compounds; catalase (CAT), AKT serine/threonine kinase 1 (AKT), nitric oxide synthase 3 (eNOS), NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygenase 1 (HO-1) and hypoxia-inducible factor 1 subunit alpha (HIF-1α) were identified as key genes; while nicotinamide adenine dinucleotide phosphate (NADP) and succinate emerged as key energy metabolites. Mechanistically, we revealed that SL may exert its anti-NAFLD effect by inducing autophagy activation and forming a comprehensive regulatory network involving key compounds, key genes, and key energy metabolites, ultimately alleviating oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. CONCLUSION: Our study demonstrated the therapeutic effect of SL in NAFLD models, and establishes a basis for the development of potential products from SL plant materials for the treatment of NAFLD.


Assuntos
Autofagia , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Metabolismo Energético , Hepatopatia Gordurosa não Alcoólica , Ratos Sprague-Dawley , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Autofagia/efeitos dos fármacos , Masculino , Metabolismo Energético/efeitos dos fármacos , Ratos , Modelos Animais de Doenças , Pós , Fígado/efeitos dos fármacos , Fígado/metabolismo , Simulação de Acoplamento Molecular , Quercetina/farmacologia , Quercetina/análogos & derivados , Quempferóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos
12.
Adv Mater ; : e2403818, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794816

RESUMO

Lithium-ion batteries (LIBs) are rapidly developing into attractive energy storage technologies. As LIBs gradually enter retirement, their sustainability is starting to come into focus. The utilization of recycled spent LIBs as raw materials for battery manufacturing is imperative for resource and environmental sustainability. The sustainability of spent LIBs depends on the recycling process, whereby the cycling of battery materials must be maximized while minimizing waste emissions and energy consumption. Although LIB recycling technologies (hydrometallurgy and pyrometallurgy) have been commercialized on a large scale, they have unavoidable limitations. They are incompatible with circular economy principles because they require toxic chemicals, emit hazardous substances, and consume large amounts of energy. The direct regeneration of degraded electrode materials from spent LIBs is a viable alternative to traditional recycling technologies and is a nondestructive repair technology. Furthermore, direct regeneration offers advantages such as maximization of the value of recycled electrode materials, use of sustainable, nontoxic reagents, high potential profitability, and significant application potential. Therefore, this review aims to investigate the state-of-the-art direct LIB regeneration technologies that can be extended to large-scale applications.

13.
Nat Commun ; 15(1): 4086, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744858

RESUMO

Sustainable battery recycling is essential for achieving resource conservation and alleviating environmental issues. Many open/closed-loop strategies for critical metal recycling or direct recovery aim at a single component, and the reuse of mixed cathode materials is a significant challenge. To address this barrier, here we propose an upcycling strategy for spent LiFePO4 and Mn-rich cathodes by structural design and transition metal replacement, for which uses a green deep eutectic solvent to regenerate a high-voltage polyanionic cathode material. This process ensures the complete recycling of all the elements in mixed cathodes and the deep eutectic solvent can be reused. The regenerated LiFe0.5Mn0.5PO4 has an increased mean voltage (3.68 V versus Li/Li+) and energy density (559 Wh kg-1) compared with a commercial LiFePO4 (3.38 V and 524 Wh kg-1). The proposed upcycling strategy can expand at a gram-grade scale and was also applicable for LiFe0.5Mn0.5PO4 recovery, thus achieving a closed-loop recycling between the mixed spent cathodes and the next generation cathode materials. Techno-economic analysis shows that this strategy has potentially high environmental and economic benefits, while providing a sustainable approach for the value-added utilization of waste battery materials.

14.
Adv Mater ; : e2401482, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695389

RESUMO

Lithium-ion batteries (LIBs), in which lithium ions function as charge carriers, are considered the most competitive energy storage devices due to their high energy and power density. However, battery materials, especially with high capacity undergo side reactions and changes that result in capacity decay and safety issues. A deep understanding of the reactions that cause changes in the battery's internal components and the mechanisms of those reactions is needed to build safer and better batteries. This review focuses on the processes of battery failures, with voltage and temperature as the underlying factors. Voltage-induced failures result from anode interfacial reactions, current collector corrosion, cathode interfacial reactions, overcharge, and over-discharge, while temperature-induced failure mechanisms include SEI decomposition, separator damage, and interfacial reactions between electrodes and electrolytes. The review also presents protective strategies for controlling these reactions. As a result, the reader is offered a comprehensive overview of the safety features and failure mechanisms of various LIB components.

15.
Adv Mater ; : e2404815, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719211

RESUMO

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

16.
Chemphyschem ; 25(13): e202400239, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38578164

RESUMO

Currently, lithium sulfur (Li-S) battery with high theoretical energy density has attracted great research interest. However, the diffusion and loss process of intermediate lithium polysulfide during charge-discharge hindered the application of the Li-S battery in modern life. To overcome this issue, metal organic frameworks (MOFs) and their composites have been regarded as effective additions to restrain the LiPS diffusion process for Li-S battery. Benefiting from the unique structure with rich active sites to adsorb LiPS and accelerate the LiPS redox, the Li-S batteries with MOFs modified exhibit superior electrochemical performance. Considering the rapid development of MOFs in Li-S battery, this review summarizes the recent studies of MOFs and their composites as the sulfur host materials, functional interlayer, separator coating layer, and separator/solid electrolyte for Li-S batteries in detail. In addition, the promising design strategies of functional MOF materials are proposed to improve the electrochemical performance of Li-S battery.

17.
J Gastroenterol Hepatol ; 39(7): 1256-1266, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38638082

RESUMO

Magnetic compression anastomosis (MCA) is a new method that provides sutureless passage construction for tubular organs. Due to the high recurrence rate of conventional endoscopic treatment and the high morbidity and mortality of surgical procedures, the MCA technique shows promise. The aim of this review is to comprehensively examine the literature related to the use of MCA in different gastrointestinal diseases over the past few years, categorizing them according to the anastomotic site and describing in detail the various methods of magnet delivery and the clinical outcomes of MCA. MCA is an innovative technique, and its use represents an advancement in the field of minimally invasive interventions. Comparison studies have shown that the anastomosis formed by MCA is comparable to or better than surgical sutures in terms of general appearance and histology. Although most of the current research has involved animal studies or studies with small populations, the safety and feasibility of MCA have been preliminarily demonstrated. Large prospective studies involving populations are still needed to guarantee the security of MCA. For technologies that have been initially used in clinical settings, effective measures should also be implemented to identify, even prevent, complications. Furthermore, specific commercial magnets must be created and optimized in this emerging area.


Assuntos
Anastomose Cirúrgica , Imãs , Humanos , Anastomose Cirúrgica/métodos , Endoscopia Gastrointestinal/métodos , Gastroenteropatias/cirurgia , Animais , Magnetismo , Resultado do Tratamento , Procedimentos Cirúrgicos sem Sutura/métodos , Pressão
18.
Small ; : e2402197, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682612

RESUMO

The conjugation of terminal ammonium salt groups with perovskite surfaces is a frequently employed technique that aims to enhance the overall performance of perovskite materials, encompassing both bulk and surface properties. Particularly, it exhibits heightened efficacy when applied to surface modification, due to its ability to mitigate defect accumulation and facilitate facile binding with the receptive sites inherent to the perovskite structure. However, the interaction of the bulk ammonium group with PbI2 has the potential to form a low-dimensional phase of perovskite, which may obstruct carrier extraction at the interface. Therefore, the surface passivators (MeO-PFACl) are designed through intramolecular potential manipulation. The combinations of the electron-donating methoxy group and π-π conjugation of the phenyl ring reduce the local potential at the reactive site of formamidinium group, making it less likely to form a low-dimension phase with perovskite. This surface passivation strategy effectively suppresses the surface nonradiative recombination and promotes the interface carrier extraction. The devices treated with MeO-PFACl have demonstrated exceptional performance, achieving a peak power conversion efficiency (PCE) of 25.88%, with an average PCE of 25.37%. These works offer a novel principle for enhancing both the efficiency and stability of PSCs using ammonium-incorporated molecules without the induction of an additional phase layer.

19.
Curr Med Chem ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685772

RESUMO

BACKGROUND: Recent studies have unveiled disulfidptosis as a phenomenon intimately associated with cellular damage, heralding new avenues for exploring tumor cell dynamics. We aimed to explore the impact of disulfide cell death on the tumor immune microenvironment and immunotherapy in lung adenocarcinoma (LUAD). METHODS: We initially utilized pan-cancer transcriptomics to explore the expression, prognosis, and mutation status of genes related to disulfidptosis. Using the LUAD multi- -omics cohorts in the TCGA database, we explore the molecular characteristics of subtypes related to disulfidptosis. Employing various machine learning algorithms, we construct a robust prognostic model to predict immune therapy responses and explore the model's impact on the tumor microenvironment through single-cell transcriptome data. Finally, the biological functions of genes related to the prognostic model are verified through laboratory experiments. RESULTS: Genes related to disulfidptosis exhibit high expression and significant prognostic value in various cancers, including LUAD. Two disulfidptosis subtypes with distinct prognoses and molecular characteristics have been identified, leading to the development of a robust DSRS prognostic model, where a lower risk score correlates with a higher response rate to immunotherapy and a better patient prognosis. NAPSA, a critical gene in the risk model, was found to inhibit the proliferation and migration of LUAD cells. CONCLUSION: Our research introduces an innovative prognostic risk model predicated upon disulfidptosis genes for patients afflicted with Lung Adenocarcinoma (LUAD). This model proficiently forecasts the survival rates and therapeutic outcomes for LUAD patients, thereby delineating the high-risk population with distinctive immune cell infiltration and a state of immunosuppression. Furthermore, NAPSA can inhibit the proliferation and invasion capabilities of LUAD cells, thereby identifying new molecules for clinical targeted therapy.

20.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167197, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653353

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and moderate exercise holds promise in ameliorating the ongoing neurodegeneration and cognitive decline. Here, we investigated whether exercise-enriched blood plasm could yield a beneficial therapeutic effect on AD pathologies and cognitive decline in transgenic AD (P301S) mice. In this investigation, a cohort of 2-month-old C57BL/6 mice were granted continuous access to either a running wheel or a fixed wheel for 6 weeks. After that, their plasmas were extracted and subsequently injected intravenously into 4.5-month-old P301S mice biweekly over a 6-week period. A comprehensive methodology was then employed, integrating behavioral tests, pathology assessments, and biochemical analyses to unveil the potential anti-dementia implications of exercise-enriched blood plasma in P301S mice. Upon systemic administration, the findings revealed a noteworthy attenuation of hippocampus-dependent behavioral impairments in P301S mice. Conversely, blood plasma from sedentary counterparts exhibited no discernible impact. These effects were intricately associated with the mitigation of neuroinflammation, the augmentation of hippocampal adult neurogenesis, and a reduction of synaptic impairments following the administration of exercise-enriched blood plasma. These findings advance the proposition that administering exercise-enriched blood plasma may serve as an effective prophylactic measure against AD, opening avenues for further exploration and potential therapeutic interventions.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Modelos Animais de Doenças , Hipocampo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Condicionamento Físico Animal , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/sangue , Hipocampo/metabolismo , Hipocampo/patologia , Condicionamento Físico Animal/métodos , Disfunção Cognitiva/terapia , Disfunção Cognitiva/sangue , Camundongos , Plasma/metabolismo , Masculino , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...