Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Plant Sci ; 347: 112185, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986912

RESUMO

The cyclic peptides, cyclotides, are identified mostly with 29-31-aa (amino acid residues) but rarely with ≥ 34-aa in plants. Viola philippica is a well-known medicinal plant but a rare metallophyte with cyclotides. A hypothesis was hence raised that the potential novel 34-aa cyclotide of Viola philippica would clearly broaden the structural and functional diversities of plant cyclotides. After homology-cloning the cyclotide precursor gene of VpCP5, a 34-aa cyclotide (viphi I) was identified to be larger than 22 other known cyclotides in V. philippica. It had a chimeric primary structure, due to its unusual loop structures (8 residues in loop 2 and 6 residues in loop 5) and aa composition (3 E and 5 R), by using phylogenetic analyses and an in-house cyclotide analysis tool, CyExcel_V1. A plasmid pCYC-viphi_I and a lab-used recombinant process were specially constructed for preparing viphi I. Typically, 0.12 or 0.25 mg ml-1 co-exposed viphi I could significantly remain cell activities with elevating Cd2+-exposed doses from 10-8 to 10-6 mol l-1 in MCF7 cells. In the model nematode Caenorhabditis elegans, IC50 values of viphi I to inhibit adult ratios and to induce death ratios, were 184.7 and 585.9 µg ml-1, respectively; the median lifespan of adult worms decreased from 14 to 2 d at viphi I doses ranging from 0.05 to 2 mg ml-1. Taken together, the newly identified viphi I exhibits functional potentials against cadmium and nematodes, providing new insights into structural and functional diversity of chimeric cyclotides in plants.

2.
Transl Pediatr ; 13(6): 921-930, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984026

RESUMO

Background: Salmonella is a significant pathogens of foodborne illness. The widespread use of antibiotics in clinical practice and animal husbandry has resulted in increasing drug resistance of Salmonella. In this study, we examined the serotype distribution and drug resistance of Salmonella in pediatric patients with diarrhea in Chenzhou City to provide a basis for the scientific control and rational use of antibiotics in clinical practice in relation to Salmonellosis. Methods: Stool Salmonella spp. were collected from patients younger than 18 years of age who met the definition for foodborne illness at two sentinel hospitals from 2017 through 2022 tested Salmonella, and a descriptive analysis of the epidemiologic characteristics. Salmonella strains isolated from the stool underwent serology and drug-sensitivity tests. The following 14 antibiotics were used for the drug-sensitivity tests: ampicillin (AMP), ampicillin/sulbactam (AMS), cefazolin (CFZ), cefoxitin, cefotaxime, ceftazidime, imipenem (IPM), tetracycline (TET), nalidixic acid, ciprofloxacin, chloramphenicol (CHL), gentamicin, trimethoprim/sulfamethoxazole (SXT), and azithromycin. Results: Samples from 1,263 pediatric with diarrhea, and Salmonella was detected in 221 (17.5%) of these patients. Positive test results were principally observed in the second and third quarters of each year, accounting for 21.1% and 19.6% of the cases, respectively. The infection rates of infants aged less than 12 months and toddlers aged 1-3 years with diarrhea were the highest at 21.3% and 17.8%, respectively. The 221 Salmonella strains were divided into 32 serotypes, of which Salmonella Typhimurium (S. Typhimurium) was the dominant strain (79.2%). The resistance rates to TET (86.9%), AMP (75.6%), AMS (58.4%), CFZ (55.7%), CHL (54.3%), and SXT (45.2%) predominated, and the differences in the drug-resistance rates to 1st-, 2nd-, and 3rd-generation cephalosporins were high (2.3-55.7%). Only 0.9% of the strains were resistant to IPM. The multidrug resistance (MDR) rate was 76.5% (169/221), and 48.9% (108/221) of the strains were resistant to five or more classes of antibiotics, of which the most common drug-resistance profile was AMP-AMS-TET-CHL-CFZ-SXT, accounting for 10.9% of Salmonella strains (24/221). Conclusions: Foodborne salmonellosis tended to occur during the summer and autumn in children, and infants and toddlers were more likely to develop salmonellosis than children in the other age groups. The dominant Salmonella serotype was S. Typhimurium. The drug-resistance rate of the tested strains was high, and the MDR problem was severe. We recommend that in the treatment of salmonellosis, antibiotics be selected rationally based on the drug-resistance status of local Salmonella resistance situation to ensure safety and efficacy.

3.
J Exp Clin Cancer Res ; 43(1): 187, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965580

RESUMO

BACKGROUND: Recent studies have highlighted the significant role of the NF-κB signaling pathway in the initiation and progression of cancer. Furthermore, long noncoding RNAs (lncRNAs) have been identified as pivotal regulators in sustaining the NF-κB signaling pathway's functionality. Despite these findings, the underlying molecular mechanisms through which lncRNAs influence the NF-κB pathway remain largely unexplored. METHODS: Bioinformatic analyses were utilized to investigate the differential expression and prognostic significance of XTP6. The functional roles of XTP6 were further elucidated through both in vitro and in vivo experimental approaches. To estimate the interaction between XTP6 and NDH2, RNA pulldown and RNA Immunoprecipitation (RIP) assays were conducted. The connection between XTP6 and the IκBα promoter was examined using Chromatin Isolation by RNA Purification (ChIRP) assays. Additionally, Chromatin Immunoprecipitation (ChIP) assays were implemented to analyze the binding affinity of c-myc to the XTP6 promoter, providing insights into the regulatory mechanisms at play. RESULTS: XTP6 was remarkedly upregulated in glioblastoma multiforme (GBM) tissues and was connected with adverse prognosis in GBM patients. Our investigations revealed that XTP6 can facilitate the malignant progression of GBM both in vitro and in vivo. Additionally, XTP6 downregulated IκBα expression by recruiting NDH2 to the IκBα promoter, which resulted in elevated levels of H3K27me3, thereby reducing the transcriptional activity of IκBα. Moreover, the progression of GBM was further driven by the c-myc-mediated upregulation of XTP6, establishing a positive feedback loop with IκBα that perpetuated the activation of the NF-κB signaling pathway. Notably, the application of an inhibitor targeting the NF-κB signaling pathway effectively inhibited the continuous activation induced by XTP6, leading to a significant reduction in tumor formation in vivo. CONCLUSION: The results reveal that XTP6 unveils an innovative epigenetic mechanism instrumental in the sustained activation of the NF-κB signaling pathway, suggesting a promising therapeutic target for the treatment of GBM.


Assuntos
Progressão da Doença , Glioblastoma , NF-kappa B , Proteínas Proto-Oncogênicas c-myc , RNA Longo não Codificante , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , NF-kappa B/metabolismo , Camundongos , Animais , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Prognóstico , Retroalimentação Fisiológica , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Masculino , Proliferação de Células , Feminino
4.
Methods Enzymol ; 699: 25-57, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942506

RESUMO

Magnesium ions (Mg2+) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg2+ within its active site. This finding has shed light on the previously elusive question of Mg2+ binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.


Assuntos
Magnésio , Sesquiterpenos , Streptomyces , Magnésio/metabolismo , Magnésio/química , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Streptomyces/enzimologia , Sítios de Ligação , Cinética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Relação Estrutura-Atividade , Cristalização/métodos , Carbono-Carbono Liases
5.
Microvasc Res ; 155: 104699, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901735

RESUMO

Patients with Takotsubo syndrome displayed endothelial dysfunction, but underlying mechanisms have not been fully clarified. This study aimed to explore molecular signalling responsible for catecholamine excess induced endothelial dysfunction. Human cardiac microvascular endothelial cells were challenged by epinephrine to mimic catecholamine excess. Patch clamp, FACS, ELISA, PCR, and immunostaining were employed for the study. Epinephrine (Epi) enhanced small conductance calcium-activated potassium channel current (ISK1-3) through activating α1 adrenoceptor. Phenylephrine enhanced edothelin-1 (ET-1) and reactive oxygen species (ROS) production, and the effects involved contribution of ISK1-3. H2O2 enhanced ISK1-3 and ET-1 production. Enhancing ISK1-3 caused a hyperpolarization, which increases ROS and ET-1 production. BAPTA partially reduced phenylephrine-induced enhancement of ET-1 and ROS, suggesting that α1 receptor activation can enhance ROS/ET-1 generation in both calcium-dependent and calcium-independent ways. The study demonstrates that high concentration catecholamine can activate SK1-3 channels through α1 receptor-ROS signalling and increase ET-1 production, facilitating vasoconstriction.

6.
Small ; : e2402752, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822717

RESUMO

Surface modification of Cu current collectors (CCs) is proven to be an effective method for protecting lithium metal anodes. However, few studies have focused on the quality and efficiency of modification layers. Herein, a novel home-made filtered cathode vacuum arc (FCVA) co-deposition system with high modification efficiency, good repeatability and environmental friendliness is proposed to realize the wide range regulation of film composition, structure and performance. Through this system, ZnMgTiAl quaternary alloy films, which have good affinity with Li are successfully constructed on Cu CCs, and the fully enhanced electrochemical performances are achieved. Symmetrical cells constructed with modified CCs maintained a fairly low voltage hysteresis of only 13 mV after 2100 h at a current density of 1 mA cm-2. In addition, the capacity retention rate is as high as 75.0% after 100 cycles in the full cells. The influence of alloy films on the dynamic evolution process of constructing stable artificial solid electrolyte interphase (SEI) layer is revealed by in situ infrared (IR) spectroscopy. This work provides a promising route for designing various feasible modification films for LMBs, and it displays better industrial application prospects than the traditional chemical methods owing to the remarkable controllability and scale-up capacity.

7.
Respir Res ; 25(1): 220, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789967

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. METHODS: The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. RESULTS: In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. CONCLUSIONS: Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.


Assuntos
Estresse do Retículo Endoplasmático , Humanos , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/metabolismo , Masculino , Feminino , Perfilação da Expressão Gênica/métodos , Pessoa de Meia-Idade , Bases de Dados Genéticas , Mapas de Interação de Proteínas/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica
8.
Front Neurol ; 15: 1351458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803642

RESUMO

Background: Ventilator-Associated Pneumonia (VAP) severely impacts stroke patients' prognosis after endovascular treatment. Hence, this study created a nomogram to predict the occurrence of VAP after endovascular treatment. Methods: The individuals with acute ischemic stroke and large vessel occlusion (AIS-LVO) who received mechanical ventilation and endovascular therapy between July 2020 and August 2023 were included in this retrospective study. The predictive model and nomogram were generated by performing feature selection optimization using the LASSO regression model and multifactor logistic regression analysis and assessed the evaluation, verification and clinical application. Results: A total of 184 individuals (average age 61.85 ± 13.25 years, 73.37% male) were enrolled, and the rate of VAP occurrence was found to be 57.07%. Factors such as the Glasgow Coma Scale (GCS) score, duration of stay in the Intensive Care Unit (ICU), dysphagia, Fazekas scale 2 and admission diastolic blood pressure were found to be associated with the occurrence of VAP in the nomogram that demonstrating a strong discriminatory power with AUC of 0.862 (95% CI, 0.810-0.914), and a favorable clinical net benefit. Conclusion: This nomogram, comprising GCS score, ICU duration, dysphagia, Fazekas scale 2 and admission diastolic blood pressure, can aid clinicians in predicting the identification of high-risk patients for VAP following endovascular treatment in large vessel occlusion stroke.

9.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732930

RESUMO

The temperature and strain fields monitoring during the preparation process of buoyancy materials, as well as the health status after molding, are important for mastering the mechanical properties of buoyancy materials and ensuring the safety of operators and equipment. This paper proposes a short and high-density femtosecond fiber Bragg grating (fs-FBG) array based on different temperature coefficients fibers. By optimizing the parameters of femtosecond laser point-by-point writing technology, high-performance fs-FBG arrays with millimeter level gating length and millimeter level spatial resolution were prepared on two types of fibers. These were successfully embedded in buoyancy materials to achieve in-situ online monitoring of the curing process and after molding. The experimental results show that the fs-FBG array sensor has good anti-chirp performance and achieves online monitoring of millimeter-level spatial resolution. Intelligent buoyancy materials can provide real-time feedback on the health status of equipment in harsh underwater environments. The system can achieve temperature monitoring with an accuracy of 0.56 °C and deformation monitoring with sub-millimeter accuracy; the error is in the order of micrometers, which is of great significance in the field of deep-sea exploration.

10.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565528

RESUMO

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ecossistema , Fósforo , Metagenoma/genética , Solo
11.
Angew Chem Int Ed Engl ; 63(27): e202401669, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651244

RESUMO

cis-Prenyltransferases (cis-PTs) catalyze the sequential head-to-tail condensation of isopentenyl diphosphate (IPP) to allylic diphosphates, producing mixed E-Z prenyl diphosphates of varying lengths; however, the specific enzymes synthesizing cis-C25 prenyl diphosphates have not been identified. Herein, we present the discovery and characterization of a cis-geranylfarnesyl diphosphate synthase (ScGFPPS) from Streptomyces clavuligerus. This enzyme demonstrates high catalytic proficiency in generating six distinct cis-polyisoprenoids, including three C25 and three C20 variants. We determined the crystal structure of ScGFPPS. Additionally, we unveil the crystal structure of nerylneryl diphosphate synthase (NNPS), known for synthesizing an all-cis-C20 polyisoprenoid. Comparative structural analysis of ScGFPPS and NNPS has identified key differences that influence product specificity. Through site-directed mutagenesis, we have identified eight single mutations that significantly refine the selectivity of ScGFPPS for cis-polyisoprenoids. Our findings not only expand the functional spectrum of cis-PTs but also provide a structural comparison strategy in cis-PTs engineering.


Assuntos
Streptomyces , Streptomyces/enzimologia , Streptomyces/genética , Engenharia de Proteínas , Cristalografia por Raios X , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Modelos Moleculares
12.
Expert Opin Pharmacother ; 25(6): 641-654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660817

RESUMO

INTRODUCTION: Diabetic cardiomyopathy (DCM) is a serious complication of diabetes mellitus involving multiple pathophysiologic mechanisms. In addition to hypoglycemic agents commonly used in diabetes, metabolism-related drugs, natural plant extracts, melatonin, exosomes, and rennin-angiotensin-aldosterone system are cardioprotective in DCM. However, there is a lack of systematic summarization of drugs for DCM. AREAS COVERED: In this review, the authors systematically summarize the most recent drugs used for the treatment of DCM and discusses them from the perspective of DCM pathophysiological mechanisms. EXPERT OPINION: We discuss DCM drugs from the perspective of the pathophysiological mechanisms of DCM, mainly including inflammation and metabolism. As a disease with multiple pathophysiological mechanisms, the combination of drugs may be more advantageous, and we have discussed some of the current studies on the combination of drugs.


Assuntos
Cardiomiopatias Diabéticas , Hipoglicemiantes , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Animais , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Cardiotônicos/uso terapêutico , Cardiotônicos/farmacologia , Quimioterapia Combinada , Fármacos Cardiovasculares/uso terapêutico , Extratos Vegetais/uso terapêutico , Extratos Vegetais/farmacologia
13.
BMC Cardiovasc Disord ; 24(1): 189, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561664

RESUMO

BACKGROUND: The Systemic Immune-Inflammation Index (SII), a novel marker of inflammation based on neutrophil, platelet, and lymphocyte counts, has demonstrated potential prognostic value in patients undergoing percutaneous coronary intervention (PCI). Our aim was to assess the correlation between the SII and major adverse cardiovascular events following percutaneous coronary intervention. METHODS: We searched PubMed, Web of Science, Embase, and The Cochrane Library from inception to November 20, 2023, for cohort studies investigating the association between SII and the occurrence of MACEs after PCI. Statistical analysis was performed using Revman 5.3, with risk ratios (RRs) and 95% confidence intervals (CIs) as relevant parameters. RESULTS: In our analysis, we incorporated a total of 8 studies involving 11,117 participants. Our findings revealed that a high SII is independently linked to a increased risk of MACEs in PCI patients (RR: 2.08,95%CI: 1.87-2.32, I2 = 42%, p < 0.00001). Additionally, we demonstrated the prognostic value of SII in all-cause mortality, heart failure, and non-fatal myocardial infarction. CONCLUSIONS: Elevated SII may serve as a potential predictor for subsequent occurrence of MACEs in patients undergoing PCI. TRIAL REGISTRATION: Our protocol was registered in PROSPERO (registration number: CRD42024499676).


Assuntos
Sistema Cardiovascular , Insuficiência Cardíaca , Infarto do Miocárdio , Intervenção Coronária Percutânea , Humanos , Inflamação/diagnóstico , Inflamação/etiologia , Insuficiência Cardíaca/etiologia
14.
Beilstein J Org Chem ; 20: 815-822, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655553

RESUMO

Drimane-type sesquiterpenoids (DMTs) are characterized by a distinctive 6/6 bicyclic skeleton comprising the A and B rings. While DMTs are commonly found in fungi and plants, their presence in bacteria has not been reported. Moreover, the biosynthetic pathways for DMTs have been primarily elucidated in fungi, with identified P450s only acting on the B ring. In this study, we isolated and characterized three bacterial DMTs, namely 3ß-hydroxydrimenol (2), 2α-hydroxydrimenol (3), and 3-ketodrimenol (4), from Streptomyces clavuligerus. Through genome mining and heterologous expression, we identified a cav biosynthetic gene cluster responsible for the biosynthesis of DMTs 2-4, along with a P450, CavA, responsible for introducing the C-2 and C-3 hydroxy groups. Furthermore, the substrate scope of CavA revealed its ability to hydroxylate drimenol analogs. This discovery not only broadens the known chemical diversity of DMTs from bacteria, but also provides new insights into DMT biosynthesis in bacteria.

15.
Chem Sci ; 15(16): 6064-6075, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665522

RESUMO

The three-dimensional structure and the molecular interaction of proteins determine their roles in many cellular processes. Chemical protein painting with protein mass spectrometry can identify changes in structural conformations and molecular interactions of proteins including their binding sites. Nevertheless, most current protein painting techniques identify protein targets and binding sites of drugs in vitro using a cell lysate or purified protein. Here, we tested 11 membrane-permeable lysine-reactive chemical probes for intracellular covalent labeling of endogenous proteins, which reveals ortho-phthalaldehyde (OPA) as the most reactive probe in the intracellular environment. An MS workflow and a new data analysis strategy termed RAPID (Reactive Amino acid Profiling by Inverse Detection) was developed to enhance detection sensitivity. RAPID with OPA successfully identified structural changes induced by the allosteric drug TEPP-46 on its target protein PKM2 and was applied to profile the conformation change of the proteome occurring in cells during thermal denaturation. The application of RAPID-OPA on cells treated with geldanamycin, selumetinib, and staurosporine successfully revealed their binding sites on target proteins. Thus, RAPID-OPA for cellular protein painting enables the identification of ligand-binding sites and detection of protein structural changes occurring in cells.

16.
Adv Healthc Mater ; 13(16): e2304432, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38462702

RESUMO

Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.


Assuntos
Prótese Vascular , Engenharia Tecidual , Engenharia Tecidual/métodos , Humanos , Animais , Matriz Extracelular Descelularizada/química , Alicerces Teciduais/química
17.
Bioorg Chem ; 146: 107308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531151

RESUMO

Genome mining of the Actinomycete Crossiella cryophila facilitated the discovery of a minimal terpenoid biosynthetic gene cluster of cry consisting of a class I terpene cyclase CryA and a CYP450 monooxygenase CryB. Heterologous expression of cry allowed the isolation and characterization of two new sesquiterpenoids, ent-viridiflorol (1) and cryophilain (2). Notably, cryophilain (2) possesses a 5/7/3-fused tricyclic skeleton bearing a distinctive bridgehead hydroxy group. The combined in vivo and in vitro experiments revealed that CryA, the first ent-viridiflorol terpene cyclase, catalyzes farnesyl diphosphate to form the 5/7/3 sesquiterpene core scaffold and P450 CryB serves as a tailoring enzyme responsible for installing a hydroxy group at the bridgehead carbon.


Assuntos
Actinobacteria , Actinomycetales , Sesquiterpenos , Terpenos , Sesquiterpenos/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomycetales/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
19.
Stem Cell Res ; 76: 103376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452706

RESUMO

The ISL LIM homeobox 1 (ISL1) gene belongs to the LIM/homeodomain transcription factor family and plays a pivotal role in conveying multipotent and proliferative properties of cardiac precursor cells. Mutations in ISL1 are linked to congenital heart disease. To further explore ISL1's role in the human heart, we have created a homozygous ISL1 knockout (ISL1-KO) human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this ISL1-KO cell line retains normal morphology, pluripotency, and karyotype. This resource serves as a valuable tool for investigating ISL1's function in cardiomyocyte differentiation.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Humanas , Humanos , Sistemas CRISPR-Cas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular , Coração , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas com Homeodomínio LIM/genética
20.
Chem Sci ; 15(8): 2833-2847, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404368

RESUMO

Drug development is plagued by inefficiency and high costs due to issues such as inadequate drug efficacy and unexpected toxicity. Mass spectrometry (MS)-based proteomics, particularly isobaric quantitative proteomics, offers a solution to unveil resistance mechanisms and unforeseen side effects related to off-targeting pathways. Thermal proteome profiling (TPP) has gained popularity for drug target identification at the proteome scale. However, it involves experiments with multiple temperature points, resulting in numerous samples and considerable variability in large-scale TPP analysis. We propose a high-throughput drug target discovery workflow that integrates single-temperature TPP, a fully automated proteomics sample preparation platform (autoSISPROT), and data independent acquisition (DIA) quantification. The autoSISPROT platform enables the simultaneous processing of 96 samples in less than 2.5 hours, achieving protein digestion, desalting, and optional TMT labeling (requires an additional 1 hour) with 96-channel all-in-tip operations. The results demonstrated excellent sample preparation performance with >94% digestion efficiency, >98% TMT labeling efficiency, and >0.9 intra- and inter-batch Pearson correlation coefficients. By automatically processing 87 samples, we identified both known targets and potential off-targets of 20 kinase inhibitors, affording over a 10-fold improvement in throughput compared to classical TPP. This fully automated workflow offers a high-throughput solution for proteomics sample preparation and drug target/off-target identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...